首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
The substrate specificity of the crystalline acid protease obtained from Rhizopus chinensis was determined using B-chain of oxidized beef insulin and numerous synthetic peptides, comparing with that of several acid proteases from various sources. The peptide bonds susceptible to the action of Rhiz. acid protease were found to be mainly those involving the amino group of bulky amino acids. The enzyme split the B-chain of oxidized insulin at twelve sites of the peptide linkages and a certain similarity in the specificity was observed among the three acid proteases, Rhiz. protease, rennin and pepsin, all of which were known to show potent milk clotting activities.  相似文献   

2.
Substrate specificity of a sulfhydryl protease (P-Ia) purified from germinating corn was investigated by using synthetic substrates and oxidized insulin B-chain. P-Ia showed a potent activity for p-nitrophenyl esters of various amino acid derivatives, except for those of carbo- benzoxy-L-proline and carbobenzoxy-L-valine. Benzoylarginine-β-naphthylamide, a good substrate for papain and cathepsin Bl, was not hydrolyzed by P-Ia. An investigation with acyl dipeptides showed that P-Ia hydrolyzed preferably the peptide bond adjacent to the carboxyl group of the aromatic amino acid. Oxidized insulin B-chain was hydrolyzed at the peptide bonds Gln4-His5, Glu13-Ala14, Ala14-Leu15, Leu15-Tyr16, Tyr16-Leu17 and Tyr26- Thr27. P-Ia, in spite of a sulfhydryl protease, seems to be characterized by its similarity to pepsin rather than papain, as far as the substrate specificity studied in the present work is concerned.  相似文献   

3.
The enzymatic properties of phytolacain G, a protease isolated from green fruit of pokeweed, were compared with those of phytolacain R, a protease obtained from ripe fruit. The optimum pH of phytolacain G was 7.5-8.0 at 37°C using casein as the substrate. The enzyme was strongly inhibited by iodoacetic acid and p-chloromercuribenzoic acid, but not by diisopropyl fluorophosphate or EDTA. These results indicated that phytolacain G was a cysteine protease, like phytolacain R. Nine sites of oxidized insulin B-chain were cleaved by phytolacain G during 20 h of hydrolysis. The six sites cleaved by phytolacain G were also cleaved by phytolacain R. The substrate specificity of phytolacain G was broad, but the preference for hydrophobic residues at the P2 position was similar to the substrate specificity of papain. The amino-terminal sequence of phytolacain G was not identical with that of phytolacain R; however, the amino acid residues conserved in the papain family were also conserved in this enzyme.  相似文献   

4.
The neutral protease of Bacillus subtilis var. amylosacchariticus (B. amylosacchariticus) was iodinated with a 25-fold molar excess of iodine at pH 9.4 for 3 min at 0°C, by which treatment the proteolytic activity toward casein was markedly reduced, while the hydrolytic activity toward an N-blocked peptide substrate was rather increased. The modified enzyme was digested with Staphylococcus aureus V8 protease at pH 8.0 and the amino acid sequences of resultant peptides were compared with those obtained from the native enzyme. One of the peptides was found to have an amino acid sequence of Thr-Ala-Asn-Leu-Ile-Tyr-Glu, which corresponds to residue Nos. 153—159 of the enzyme, where Tyr-158 was identified to be mono-iodotyrosine. The other two peptides were those containing Tyr-21 which was mono- and di-iodinated, respectively. Referring to nitration experiments on the neutral protease and the active site structure of thermolysin, it was concluded that the iodination of Tyr-158 is mainly responsible for the activity changes of B. amylosacchariticus neutral protease.  相似文献   

5.
A protease (freesia protease B) has been purified to electrophoretic homogeneity from corms of freesia, Freesia reflacta by five steps of chromatography. Its Mr was estimated to be about 26,000 by SDS–PAGE. The optimum pH of the enzyme was 6.0–7.0 at 30°C using casein as a substrate. The enzyme was strongly inhibited by p-chloromercuribenzoic acid but not by phenylmethanesulphonylfluoride and EDTA. These results indicate that freesia protease B is a cysteine protease. Nine sites of oxidized insulin B-chain were cleaved by freesia protease B in 24 h of hydrolysis. The four cleavage sites among them resembled those of papain. From the digestion of five peptidyl substrates the specificity of freesia protease B was found to be approximately broad, but the preferential cleavage sites were negatively charged residues at positions. Freesia protease B preferred also the large hydrophobic amino acid residues at the P2 position, in a similar manner to papain. The amino terminal sequence of freesia protease B was identical with those of papain in regard to the conservative residues of cysteine protease.  相似文献   

6.
Protease activity was detected in the culture medium of Flavobacterium balustinum P104 grown at 10 °C, which was isolated from salmon (Oncorhynchus keta) intestine. The enzyme, designated as CP-70 protease, was purified to homogeneity from the culture broth by ion exchange and gel filtration chromatographyies. The molecular mass of the protease was 70 kDa, and its isoelectric point was close to 3.5. Maximal activity toward azocasein was observed at 40 °C and from pH 7.0 to 9.0. The activity was strongly inhibited by phenylmethylsulfonyl fluoride, suggesting that the enzyme is a serine protease. The n-terminal amino acid sequence was Asp-Thr-Arg-Gln-Leu-Leu-Asn-Ala-Asn-Ser-Asp-Leu-Leu-Asn-Thr-Thr-Gly-Asn-Val-Thr-Gly-Leu-Thr-Gly-Ala-Phe-Asn-Gly-Glu-Asn. A search through the database for sequence homology yielded no significant match. The initial cleavage sites for oxidized insulin B-chain were found to be the Glu13-Ala14 and Phe24-Phe25 bonds. The result of the cleavage pattern of oxidized insulin B-chain suggests that CP-70 protease has a broader specificity than the other cold-active proteases against the peptide substrate. Received: 17 April 1998 / Received last revision: 17 June 1998 / Accepted: 10 July 1998  相似文献   

7.
A protease, excreted by a sporogeneous strain of B. megaterium, growing exponentially in a minimum glucose ammonium medium, was isolated. It is a neutral endopeptidase, stabilized by Ca++, inhibited by o-phenanthroline, but not by di-isopropylfluorophosphate. The specificity, studied on insulin B-chain, glucagon, cytochrome c, and dipeptides substrates, indicated the need for a dipeptide backbone with both substituted amino and carboxyl groups. A requirement was observed for a nonpolar lateral chain in the amino acid whose amino group was involved in the peptide bond (Leu, Phe, Ala, He, Val). Rates of hydrolysis varied also with the amino acid whose carboxyl group was involved (e.g., His > Ser > Ala > Gly). In complex medium, supplemented with Yeast Extract, the biosynthesis of the protease was repressed during growth, but the same enzyme was excreted during sporulation. The repression was apparently of the same nature as that controlling sporulation during and after growth (e.g., repression by a mixture of amino acids or high concentration of glucose). An asporogeneous mutant showed a normal product ion of protease under all conditions, and a low intracellular protease turnover after growth. A mutant unable to produce protease showed a normal sporulation and a high protein turnover. This protease, here termed megapeptidase, seems to be a typical growth enzyme, not related to either the sporulation process or to the protein turnover after growth.  相似文献   

8.
Some physical and chemical properties and substrate specificity were investigated of the neutral protease obtained from B. amylosacchariticus, a strain of saccharogenic α-amylase producing Bacillus subtilis. The molecular weight and sedimentation coefficient of the protease were estimated to be 33,800 and 3.02, respectively, by ultracentrifugal analyses, and alanine was identified as an amino-terminal amino acid of the enzyme by the Sanger’s method. The enzyme showed more broad specificity than the neutral protease of liquefying α-amylase-producing B. subtilis, when tested with synthetic peptides, and hippuryl-l-leucinamide was the best substrate among 42 compounds tested. On a long incubation, the enzyme hydrolyzed several proteins in a degree of 10 to 25% as peptide bond cleavage.  相似文献   

9.
Cleavage specificity of two fibrinolytic enzymes from Lumbricus rubellus [Nakajima, N., et al., Biosci. Biotechnol. Biochem., 57, 1726-1730 (1993) and 60, 293-300 (1996)] was investigated using beta-amyloid 1-40 and oxidized insulin B-chain as peptide substrates. The serine protease, F-III-2, cleaved the former substrate at six sites, and the latter at five sites. F-II digested them at six and ten, respectively. The cleavage specificity of F-III-2 resembled those of both trypsin and chymotrypsin. F-II had a broader specificity than F-III-2 and preferred also the bonds consisting neutral or hydrophobic amino acids. Furthermore, F-III-2 itself was digested initially on the site of Arg(144)-Tyr(145) to produce two peptide fragments, when it was autolyzed regularly by heating.  相似文献   

10.
A novel protease produced by Bacillus cereus grown on wool as carbon and nitrogen source was purified. B. cereus protease is a neutral metalloprotease with a molecular mass of 45.6 kDa. The optimum activity was at 45 °C and pH 7.0. The substrate specificity was assessed using oxidized insulin B-chain and synthetic peptide substrates. The cleavage of the insulin B-chain was determined to be Asn3, Leu6, His10-Leu11, Ala14, Glu21, after 12 h incubation. Among the peptide substrates, the enzyme did not exhibit activity towards ester substrates; with p-nitroanilide, the kinetic data indicate that aliphatic and aromatic amino acids were the preferred residues at the P1 position. For furylacryloyl peptides substrates, which are typical substrates for thermolysin, the enzyme exhibited high hydrolytic activity with a Km values of 0.858 and 2.363 mM for N-(3-[2-Furyl]acryloyl)-Ala-Phe amide and N-(3-[2-Furyl]acryloyl)-Gly-Leu amide, respectively. The purified protease hydrolysed proteins substrates such as azocasein, azocoll, keratin azure and wool.  相似文献   

11.
The substrate specificity of Serratia protease was determined using various synthetic substrates. The enzyme did not participate in the hydrolysis of di- and tri-peptides except benzoylglycylleucinamide which was split at a limited rate into hippuric acid and leucinamide. The enzyme action on larger peptides was also studied. The enzyme cleaved the gly-leu bond in eledoisin related peptide and the gly-phe bond in bradykinin. The enzyme split oxidized insulin B-chain at twelve different peptide bonds.  相似文献   

12.
The neutral pro tease of Bacillus subtilis var. amylosacchariticus was photooxidized in the presence of methylene blue, by which treatment the enzyme was rapidly inactivated. The inactive enzyme was digested with endoproteinase Asp-N, the resultant peptides were separated by HPLC, and their amino acid sequences were compared with those obtained from the unmodified enzyme. Of four peptides that contained histidine residues, only the recovery of one peptide was found to be decreased by the photooxidation with the appearance of a new peptide. Comparisons of amino acid compositions and sequences between these two peptides showed that the latter peptide lacked His228 of the former one, indicating that His228was photooxidized. This result suggests that His228 is involved in the catalytic reaction of the neutral protease or interaction with substrates.  相似文献   

13.
The neutral protease of Bacillus subtilis var. amylosacchariticus was cleaved chemically or digested with proteolytic enzymes, and the resultant peptides were separated and purified by high performance liquid chromatography. The sequence analyses of these peptides by the manual Edman procedure established the complete amino acid sequence of the enzyme. The neutral protease consisted of 300 amino acid residues with Ala and Leu as its amino- and carboxyl-termini, respectively, and the molecular weight was calculated to be 32,633. The sequence was found to be identical to that of B. subtilis 1A72 neutral protease, which was deduced from nucleotide sequencing. Comparison of the sequence with those of other Bacillus proteases revealed that the putative active site amino acid residues, Zn-binding ligands, and two Ca-binding sites were well conserved among them, as compared with those of thermolysin.  相似文献   

14.
In order to determine the specificity of Aspergillus Saitoi protease, the hydrolyzate of B-chain of insulin oxidized by this enzyme was investigated on paperchromatography according to the 2,4-dinitrofluorobenzene technique. Specificity was compared with pepsin and other proteolytic enzymes.  相似文献   

15.
The gene encoding the extracellular neutral metalloprotease ShpI from Staphylococcus hyicus subsp. hyicus was cloned. DNA sequencing revealed an ORF of 1317 nucleotides encoding a 438 amino acid protein with Mr of 49698. When the cloned gene was expressed in Staphylococcus carnosus, a 42 kDa protease was found in the culture medium. The protease was purified from both S. carnosus (pCAshp1) and S. hyicus subsp. hyicus. The N-terminal amino acid sequences of the two proteases revealed that ShpI is organized as a pre-pro-enzyme with a proposed 26 amino acid signal peptide, a 75 amino acid hydrophilic pro-region, and a 337 amino acid extracellular mature form with a calculated Mr of 38394. The N-termini showed microheterogeneity in both host strains. ShpI had a maximum proteolytic activity at 55°C and pH 7.4–8.5. The protease, which had a low substrate specificity, could be inhibited by metal- and zinc-specific inhibitors, such as EDTA and 1,10-phenanthroline. Insensitivity to phosphoramidon separates ShpI from the thermolysin-like family. The conserved Zn2+ binding motif, the only homology to other proteases, and the reactivation of the apoenzyme by Zn2+, indicated that Zn2+ is the catalytic ion. Ca2+ very probably acts as a stabilizer. We also demonstrated the presence of a second extracellular protease in S. hyicus subsp. hyicus.  相似文献   

16.
We previously reported purification and characterization of a 90k serine protease with pI 3.9 from Bacillus subtilis (natto) No. 16 [Kato et al. 1992 Biosci Biotechnol Biochem 56:1166]. The enzyme showed different and unique substrate specificity towards the oxidized B-chain of insulin from those of well-known bacterial serine proteases from Bacillus subtilisins. The structural gene, hspK, for the 90k serine protease was cloned and sequenced. The cloned DNA fragment contained a single open reading frame of 4302 bp coding a protein of 1433 amino acid residues. The deduced amino acid sequence of the 90k-protease indicated the presence of a typical signal sequence of the first 30 amino acids region and that there was a pro-sequence of 164 amino acid residues after the signal sequence. The mature region of the 90k-protease started from position 195 of amino acid residue, and the following peptide consisted of 1239 amino acid residues with a molecular weight of 133k. It might be a precursor protein of the 90k-protease, and the C-terminal region of 43k might be degraded to a mature protein from the precursor protein. The catalytic triad was thought to consist of Asp33, His81, and Ser259 from comparison of the amino acid sequence of the 90k-protease with those of the other bacterial serine proteases. The high-molecular-weight serine protease, the 90k-protease, may be an ancient form of bacterial serine proteases.  相似文献   

17.
The complete amino acid sequence of the B-chain of ricin E has been determined. The reduced and carboxymethylated B-chain was digested with trypsin, followed by separation and purification of the resulting peptides using reverse-phase HPLC. The amino acid sequence of each tryptic peptide was determined employing the DABITC/PITC double-coupling method. The B-chain of ricin E proved to consist of 262 amino acid residues. By comparing the amino acid sequence of the B-chain of ricin E with those of ricin D and of Ricinus communis agglutinin, it was found that the B-chain of ricin E was composed of the N-terminal half of ricin D and the C-terminal half of R. communis agglutinin. This result suggested that the gene recombination probably occurred at the center region of two B-chain genes of ricin D and R. communis agglutinin.  相似文献   

18.
Rarobacter faecitabidus protease I, a yeast-lytic serine protease, was characterized in order to elucidate the mechanism of lysis of yeast cells by this enzyme. The N-terminal amino acid sequence of the enzyme was found to be homologous to those of Lysobacter enzymogenes alpha-lytic protease and Streptomyces griseus proteases A and B around the catalytic His residue, showing that it is a mammalian type serine protease. In a study of its substrate specificity, it preferentially hydrolyzed the ester of alanine among amino acid p-nitrophenylesters. It also efficiently hydrolyzed succinyl Ala-Pro-Ala p-nitroanilide, the specific synthetic substrate for pancreatic elastase. With oxidized insulin B-chain, it hydrolyzed almost exclusively the peptide bond between valine 18 and cysteic acid 19 in the early step of the reaction, and thereafter it partially hydrolyzed Val12-Glu13, Ala14-Leu15, and Leu15-Tyr16. These results indicate that Rarobacter protease I is elastase-like in its substrate specificity, preferentially hydrolyzing the peptide bond of aliphatic amino acids. Its affinity for yeast cells was also investigated, and while Rarobacter protease I was adsorbed by yeast cells, pancreatic elastase was not. This difference was thought to account for the failure of pancreatic elastase to lyse yeast cells, even though its specificity is similar to that of the yeast-lytic enzyme. Rarobacter protease I was adsorbed by a mannose-agarose column and specifically eluted from the column with a buffer containing D-mannose or D-glucose. These monosaccharides also inhibited its yeast-lytic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A new high-alkaline protease (ALTP) was purified to homogeneity from a culture of the strictly anaerobic and extremely alkaliphilic Alkaliphilus transvaalensis. The molecular mass was 30 kDa on sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The enzyme showed the maximal caseinolytic activity higher than pH 12.6 in KCl–NaOH buffer at 40°C. Hydrolysis of the oxidized insulin B-chain followed by mass spectrometric analysis of the cleaved products revealed that as many as 24 of the total 29 peptide bonds are hydrolyzed in a block-cutting manner, suggesting that ALTP has a widespread proteolytic functions. Calcium ion had no effect on the activity and stability of ALTP, unlike known subtilisins. The deduced amino acid sequence of the enzyme comprised 279 amino acids plus 97 prepropeptide amino acids. The amino acid sequence of mature ALTP was confirmed by capillary liquid chromatography coupled to tandem mass spectrometry, which was the 93% coverage of the deduced amino acid sequence. The mature enzyme showed moderate homology to subtilisin LD1 from the alkaliphilic Bacillus sp. strain KSM-LD1 with 64% identity, and both enzymes formed a new subcluster at an intermediate position among true subtilisins and high-alkaline proteases in a phylogenetic tree of subtilase family A. ALTP is the first high-alkaline protease reported from a strict anaerobe in this family.  相似文献   

20.
Intracellular serine protease, termed ISP-103, was isolated from Bacillus subtilis, strain 103. The substrate specificity of the enzyme was compared to that of secretory subtilisins. Similar to subtilisins, ISP-103 cleaves a single peptide bond Ala20-Ser21 within the native pancreatic ribonuclease A, which results in the accumulation of trypsin-sensitive ribonuclease S, consisting of a non-covalently bound S-peptide (20 amino acid residues) and S-protein (104 amino acid residues). The enzyme hydrolyzes a single peptide bond Leu15-Tyr16 of the B-chain of oxidized bovine insulin, in contrast to the subtilisins cleaving four additional bonds. ISP prefers Leu rather than Phe in the P1 binding site of the rho-nitroanilide peptide substrates and shows a more strict dependence of the activity on the presence of the hydrophobic residues in the P2 and P3 sites. The data obtained indicate that the substrate specificity of ISP, being within the borders of subtilisin specificity, is nevertheless much more restricted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号