首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. By isoelectric focusing S-cyanoethyl glutenin was observed to be composed of various component-polypeptides having a pI spectrum in a pH range from 6 to 9.

2. During isoelectric focusing a precipitation zone was built up in the column in spite of the presence of 6 m urea. The amount of the precipitate formed was less with S-cyanoethyl glutenin than with S-sulfo glutenin.

3. S-Cyanoethyl glutenin was divided into eight fractions by isoelectric focusing. By starch-gel electrophoresis it was suggested that Fractions I, III and P were mainly composed of a single component.

4. Major N-terminal amino acids of Fractions I, III and P were phenylalanine, glycine and alanine, respectively. In the amino acid composition, distinct differences were observed in the respective fractions, especially in Fraction P. Fraction P showed a much higher content of basic amino acids and a lower content of glutamic acid in comparison with the other two.  相似文献   

2.
1. Monoglycosylceramide was isolated from the skin of Rana nigromaculata (Japanese pond frog), and further fractionated into three subgroups (Fraction I, Fraction II and Fraction III) by borate-impregnated Florisil column chromatography. 2. Fraction I and Fraction II contained mainly glucose as their hexose components, while Fraction III contained galactose. 3. Major long chain bases of Fraction I and Fraction III were D-erythro-1, 3-dihydroxy-2-amino-4-trans-octadecene (4-sphingenine) and D-erythro-1, 3-dihydroxy-2-aminooctadecane (sphinganine), whereas those of Fraction II were D-ribo-1, 3, 4-trihydroxy-2-aminooctadecane (4D-hydroxysphinganine) and 1, 3, 4-trihydroxy-2-aminoeicosane (C20 homologues of 4D-hydroxysphinganine). This is the first evidence of the presence of trihydroxy base-containing glycolipids in the skin of vertebrates. 4. All three subgroups of monoglycosylceramide contained both hydroxy and nonhydroxy fatty acids ranging from C14 and C26. Saturated fatty acids represented more than 90% of the total. Some differences of the fatty acid composition in the three subgroups were also observed.  相似文献   

3.
Palmitic acid solubilized with Triton WR-1339 was converted to palmitoyl-CoA by microsomal membranes but lignoceric acid solubilized with Triton WR-1339 was not an effective substrate even though the detergent dispersed the same amount of these fatty acids and was also not inhibitory to the enzyme [I. Singh, R. P. Singh, A. Bhushan, and A. K. Singh (1985) Arch. Biochem. Biophys. 236, 418-426]. This observation suggested that palmitoyl-CoA and lignoceroyl-CoA may be synthesized by two different enzymes. We have solubilized the acyl-CoA ligase activities for palmitic and lignoceric acid of rat brain microsomal membranes with Triton X-100 and resolved them into three separate peaks (fractions) by hydroxylapatite chromatography. Fraction A (palmitoyl-CoA ligase) had high specific activity for palmitic acid and Fraction C (lignoceroyl-CoA ligase) for lignoceric acid. Specific activity of palmitoyl-CoA ligase for palmitic acid was six times higher than in Fraction C and specific activity of lignoceroyl-CoA ligase for lignoceric acid was four times higher than in Fraction A. At higher concentrations of Triton X-100 (0.5%), lignoceroyl-CoA ligase loses activity whereas palmitoyl-CoA ligase does not. Lignoceroyl-CoA ligase lost 60% of activity at 0.6% Triton X-100. Palmitoyl-CoA ligase (T1/2 of 4.5 min) is more stable at 40 degrees C than lignoceroyl-CoA ligase (T1/2 of 1.5 min). The pH optimum of palmitoyl-CoA ligase was 7.7 and that of lignoceroyl-CoA ligase was 8.4. Similar to our results with intact membranes, palmitic acid solubilized with Triton WR-1339 was converted to palmitoyl-CoA by palmitoyl-CoA ligase whereas lignoceric acid when solubilized with Triton WR-1339 was not able to act as substrate for lignoceroyl-CoA ligase. Since solubilized enzyme activities for synthesis of palmitoyl-CoA and lignoceroyl-CoA from microsomal membranes can be resolved into different fractions by column chromatography and demonstrate different properties, we suggest that in microsomal membranes palmitoyl-CoA and lignoceroyl-CoA are synthesized by two different enzymes.  相似文献   

4.
1. The effects of unsaturated fatty acids on drug-metabolizing enzymes in vitro were measured by using rat and rabbit hepatic 9000g supernatant fractions. 2. Unsaturated fatty acids inhibited the hepatic microsomal metabolism of ;type I' drugs with inhibition increasing with unsaturation: arachidonic acid>linolenic acid>linoleic acid>oleic acid. Inhibition was independent of lipid peroxidation. Linoleic acid competitively inhibited the microsomal O-demethylation of p-nitroanisole and the N-demethylation of (+)-benzphetamine. 3. The hepatic microsomal metabolism of ;type II' substrates, aniline and (-)-amphetamine, was not affected by unsaturated fatty acids. 4. The rate of reduction of p-nitrobenzoic acid and Neoprontosil was accelerated by unsaturated fatty acids. 5. Linoleic acid up to 3.5mm did not decelerate the generation of NADPH by rat liver soluble fraction, nor the activity of NADPH-cytochrome c reductase of rat liver microsomes. Hepatic microsomal NADPH oxidase activity was slightly enhanced by added linoleic acid. 6. No measurable disappearance of exogenously added linoleic acid occurred when this fatty acid was incubated with rat liver microsomes and an NADPH source. 7. The unsaturated fatty acids used in this study produced type I spectra when added to rat liver microsomes, and affected several microsomal enzyme activities in a manner characteristic of type I ligands.  相似文献   

5.
Lipids were extracted from bovine brain myelin using a mixture of hexane and isopropanol (32). Myelin lipids were resolved, using Sep Pak chromatography, into four fractions: Fraction 1 contained neutral lipids, fraction 2, free fatty acids, fraction 3, ethanolamine phospholipids and fraction 4, choline phospholipids. Docosahexanoic (DHA) and arachidonic (AA) acids in these fractions were measured by RPHPLC. Fraction 2 was analyzed directly, the other three fractions were subjected to alkaline hydrolysis before analysis for DHA and AA. DHA and AA were not found in fraction 1. Both DHA and AA were found in fractions 2 and 3. Only AA was consistently found in fraction 4. These results were confirmed by GC.  相似文献   

6.
1. A trial test was attempted of complete hydrolysis of peptides and proteins into amino acids by enzymes. “Neutral proteinase” of Bacillus subtilis or “Alkalophilic proteinase” of a Streptomyces sp. was used for preliminary digestion of substrate, and a mixture of three aminopeptidases of Bacillus subtilis was employed for subsequent hydrolysis of proteinase digest.

2. The oxidized insulin B chain was hydrolyzed completely by the method. Several proteins including enzymes which contained no or less cystine and cysteine were also hydrolyzed almost completely.

3. On the other hand, certain glycoproteins were hydrolyzed to leave a few glycopeptides in which all glycomoieties of the proteins were retained. The implications of the results are discussed.  相似文献   

7.
Nitrogen regulation of amino acid catabolism in Neurospora crassa   总被引:5,自引:0,他引:5  
Neurospora crassa can utilize numerous compounds including certain amino acids as a sole nitrogen source. Mutants of the nit-2 locus, a regulatory gene which is postulated to mediate nitrogen catabolite repression, are deficient in the ability to utilize several amino acids as well as other nitrogen sources used by wild type. Various enzymes involved in amino acid catabolism were found to be regulated in distinct ways. Arginase, ornithine transaminase, and pyrroline-5-carboxylate dehydrogenase are all inducible enzymes but are not subject to nitrogen catabolite repression. By contrast, proline oxidase and the amino acid transport system(s) are controlled by nitrogen repression and their synthesis is increased markedly when nitrogen source is limiting. Unlike wild type, the nit-2 mutant cannot derepress amino acid transport, although proline oxidase is regulated in a normal fashion.This work was supported by Grant R01 GM-23367 from the National Institutes of Health. T. J. F. was supported by an NIH Predoctoral Traineeship in Developmental Biology; G. A. M. is supported by NIH Career Development Award GM-00052.  相似文献   

8.
Feeding xenobiotics such as polychlorinated biphenyls (PCB) causes hypercholesterolemia and fatty liver in rats. The hypercholesterolemia was characterized by high levels of high density lipoproteins (HDL) and apolipoprotein A-I (apo A-I), and by very low density lipoproteins (VLDL) rich in cholesterol and apo E (designated “PCB-VLDL”). The mechanisms for the generation of “PCB-VLDL” and fatty liver, and for hyper-α-lipoproteinemia in rats fed PCB were investigated. The secretion rate of VLDL-lipids was increased by PCB on day 3, while the secretion rate of only VLDL-cholesterol and phospholipid were increased by PCB on days 8 and 57. Although all liver lipids were accumulated by PCB, the accumulation of esterified cholesterol was the most drastic. These results suggested that PCB stimulated the secretion of VLDL at the early period of PCB feeding (on day 3), and that cholesterol-rich VLDL, “PCB-VLDL”, was not generated in the circulation, but was originally secreted from the liver. In spite of the stimulation of VLDL secretion, liver lipids accumulated within 8 days on the PCB diet. On days 3 and 8, serum levels of free fatty acids were not changed by PCB feeding. These data and our previous findings that PCB induced hepatic lipogenic enzymes lead us to speculate that fatty liver induced by PCB may be attributed to a stimulation of de novo synthesis of liver lipids. Even when hepatic secretion of VLDL was blocked by orotic acid, HDL-cholesterol was increased by PCB feeding, suggesting that the increase in serum level of HDL by PCB was not due to stimulation of cholesterol transport into HDL from VLDL.  相似文献   

9.
To estimate the steric distance between the bitter taste determinant sites in peptides, some cyclic dipeptides, amino acid anilides, amino acid cyclohexylamides, and benzoyl amino acids were synthesized and their tastes were evaluated. The diketopiperazine ring of cyclic dipeptides acted as a bitter taste determinant site due to its hydrophobicity. The steric distance between 2 sites was estimated as 4.1 Å from the molecule models of cyclic dipeptides composed of typical amino acids in the bitter peptides. Due to the hypothesis of two bitter taste determinant sites, which bind with the bitter taste receptor via a “binding unit” and a “stimulating unit,” a mechanism for the bitterness in peptides was postulated.  相似文献   

10.
Summary Sclerotia of Sclerotinia sclerotiorum (Lib.) D By. were obtained from commercial pea-and bean-cleaning operations or grown on potato-dextrose agar and synthetic glucose-and sucrose-salts agar media. The crude fat (ether extract) content of sclerotia varied from 0.8 to 1.5%. Extraction and fractionation of the lipids followed by gas chromatographic analysis showed that sclerotia from pea cleanings contained one predominant hydrocarbon which was absent from sclerotia produced in the laboratory. Sclerotia from natural sources and grown in the laboratory contained a similar distribution of C18 unsaturated free fatty acids, however, quantitative differences were noted. Palmitic, oleic and linoleic were the major free fatty acids of the laboratory-grown sclerotia while a high proportion of linoleic acid was also found in sclerotia from natural sources. Sclerotia were fractionated into water-soluble and water-insoluble fractions. After acid hydrolysis of the waterinsoluble fraction, both fractions were analyzed for amino acids. Twenty-one compounds, including 2 unknowns, were detected in the soluble fraction. The hydrolyzates contained 19 amino acids, including the same 2 unknowns. Two compounds tentatively identified as ornithine and -aminobutyric acid were found only in the water-soluble fraction. The relative amino acid composition of the water-insoluble fraction of sclerotia from various sources was fairly constant but the arginine content decreased on the synthetic media.  相似文献   

11.
Fractionation of sorbitol metabolites in the culture liquid of Gluconobacter melanogenus IFO 3292 was examined by column chromatographic techniques. Ion exchange column chromatography of the culture supernatant allowed to divide the components of the metabolites into Fractions I, II, III and IV. Paperelectrophoretic and paperchromatographic analyses of these fractions revealed that Fractions I, II, III and IV contained neutral sugar, hexonic acids, 5-ketohexonic acid and 2-ketohexonic acids, respectively.

The neutral sugar in Fraction I, the 5-ketohexonic acid in Fraction III and the 2-ketohexonic acids in Fraction IV were isolated and determined to be l-sorbose, 5-keto-d- mannonic, 2-keto-d-gluconic and 2-keto-l-gulonic acids, respectively, from their physical properties. In Fraction II were contained two different hexonic acids, one of which was identified to be l-idonic acid by the aid of substrate specificity of a hexonic acid dehydrogenase of Pseudomonas aeruginosa, and the other was determined to be d-mannonic acid as the phenylhydrazide derivative.  相似文献   

12.
By use of ion exchange chromatography we have isolated two discrete classes of “free” glycosaminoglycans (GAG) from human plasma. The GAG fractions were tested for their effects on two lipoprotein lipase (LPL) enzyme systems containing an apolipo-protein C-II activated emulsion as the triglyceride substrate and bovine serum albumin as the free fatty acid acceptor. The low-charge GAG (Fraction I) had essentially no effect on the LPL reaction. The high-charge GAG (Fraction II) stimulated the LPL reaction 100 to 300%. The GAG composition of each fraction was investigated with chemical and enzymatic techniques. Fraction I consisted of low-charge chondroitin sulfate noncovalently bound to protein. Fraction II consisted of a mixture of high-charge GAG non-covalently bound to protein. Degradation with nitrous acid eliminated the ability of high-charge GAG to stimulate LPL. This and other evidence suggests that the high-charge GAG in human plasma responsible for LPL activation is heparan sulfate (HS). We suggest that plasma HS may modulate triglyceride clearance mechanisms in vivo by its interaction with LPL.  相似文献   

13.
Three fractions (DE-I, DE-II and DE-III) of Z-protein (fatty acid binding protein) have been isolated from rat liver cytosol by DEAE-cellulose chromatography and characterized. They had the same molecular weight of 14000 and essentially identical amino acid composition. However, compositions of endogenous fatty acids were found to differ strikingly from one another. Long-chain fatty acids detected in DE-II were palmitic, stearic, oleic, linoleic and arachidonic acids. In contrast to DE-II, DE-III contained mainly arachidonic acid. Molar ratios of endogenous long-chain fatty acids to both DE-II and DE-III were estimated to be around 1.0. Unlike the latter two fractions, DE-I was virtually lipid-free. Analyses of the three fractions by polyacrylamide gel electrophoresis, electrofocusing and DEAE-cellulose chromatography before and after delipidation suggested that the difference between DE-I and DE-II was in part due to fatty acids bound to DE-II. In contrast, DE-III appeared to be somewhat different from these forms in its protein structure, though tryptic peptide mappings of the three fractions did not reveal clear differences among them. Analysis of the primary structure was made on the most abundant fraction, DE-II, to investigate the relationship among the three fractions and to other proteins. The protein was a single chain consisting of 127 amino acid residues and had a mostly acetylated NH2 terminus and a free sulfhydryl group. The complete sequence of Z-protein showed striking homology to cellular retinoid binding proteins and peripheral nerve myelin P2 protein, which indicated the presence of a new family of cellular lipid-binding proteins diverged from a common ancestor. A possible intragenic duplication of Z-protein was also suggested.  相似文献   

14.
Two polypeptide fractions have been purified from a “soluble” fraction of n-butanol-extracted Streptomyces albus membranes by preparative electrophoresis in sodium dodecylsulphate. They accounted for approx. 80% of the protein of the fraction (i.e. 20% of the total membrane protein). The ultraviolet spectrum of Group 1 (relative mobility 1.0) revealed the presence of nucleotide material, while that of Group 3 (relative mobility 0.65±0.05) showed the presence of a possibly aggregated protein-like material. About 100 and 30% of the protein contents (Lowry method) of Groups 3 and 1, respectively, were recovered as amino acid residues. These results confirm the protein nature of both fractions and suggest an overestimation of the protein value in Group 1. Both polypeptide groups can be classified as “extrinsic” membrane proteins on the basis of their similar amino acid composition (Vanderkooi, G. and Capaldi, R. A. (1972) Ann. N.Y. Acad. Sci. 195, 135–138). Three N-terminal amino acids were found in each fraction: one common (alanine), methionine, leucine or isoleucine (Group 3) and glutamic acid, lysine (Group 1). The sedimentation coefficients calculated were 2.46 S for Group 3 and 1.54 S for Group 1. Analysis of the isolated groups by gel electrophoresis under non-dissociating conditions or with Triton X-100, gave aggregate-like patterns.Sodium dodecylsulphate electrophoresis revealed an anomalous staining behaviour of Group 3 depending upon the dissociating conditions. The whole “soluble” fraction bound 0.40 mg dodecylsulphate /mg protein (0.55 mg detergent/mg protein corrected for overestimation). After dialysis, the fraction retained 10% of the bound dodecylsulphate. Circular dichroism of the isolated groups after exhaustive dialysis showed similar spectra, although of lower dichroism, to those obtained by other authors on soluble enzymes treated with sodium dodecylsulphate. Strong acid conditions were required to change the CD spectra of the polypeptides.  相似文献   

15.
The distinctive contractile and metabolic characteristics of different skeletal muscle fiber types are associated with different protein populations in these cells. In the present work, we investigate the regulation of concentrations of three glycolytic enzymes (aldolase, enolase, glyceraldehyde-3-phosphate dehydrogenase) and creatine-phosphate kinase in “fast-twitch” (breast) and “slow-twitch” (lateral adductor) muscles of the chicken. Results of short-term amino acid incorporation experiments conducted both in vivo and with muscle explants in vitro showed that these enzymes turnover at different rates and that aldolase turns over 2 to 3 times faster than the other three enzymes. However, these differences in turnover rates were difficult to detect in long-term double-isotope incorporation experiments, presumably because extensive reutilization of labeled amino acids occurred during these long-term experiments. Mature muscle fibers synthesize these four cytosolic enzymes at very high rates. For example, 11 to 14% of the total labeled leucine incorporated into protein by breast muscle fibers was found in the enzyme aldolase. Results of short-term amino acid incorporation experiments also showed that the relative rates of synthesis of the three glycolytic enzymes were about fourfold higher in mature “fast-twitch” muscle fibers than in mature “slow-twitch” ones while the relative rates of synthesis of creatine-phosphate kinase were similar in the two fiber types. The relative rates of synthesis of these four enzymes and cytosolic proteins in general were found to be very similar in immature muscles of both types. More profound changes in the relative rates of synthesis of major cytosolic proteins, including the glycolytic enzymes, occurred during postembryonic maturation of fast-twitch fibers than occurred during maturation of slow-twitch fibers. Our work demonstrates that (1) the synthesis of creatine-phosphate is independently regulated with respect to the synthesis of the glycolytic enzymes in muscle fibers; and (2) the approximate fourfold higher steady-state concentrations of glycolytic enzymes in fast-twitch muscle fibers as compared with slow-twitch fibers are determined predominantly by regulatory mechanisms operating at the level of protein synthesis rather than protein degradation. Our demonstration that more profound changes in the relative rates of synthesis of major cytosolic proteins occur during maturation of fast-twitch fibers as compared with slow-twitch fibers is discussed in terms of the mode(s) of fiber-type differentiation proposed by others.  相似文献   

16.
The effects of unsaturated fatty acids on the activities of peroxisomal enzymes of Tetrahymena pyriformis were investigated. When saturated fatty acids and the corresponding unsaturated fatty acids (C18) were added to the culture medium at 0.05%, the activities of peroxisomal enzymes [fatty acyl-CoA oxidase (FAO), carnitine acetyltransferase (CAT), isocitrate lyase (ICL), and malate synthase (MS)] were significantly increased. The order of effectiveness was linoleic acid greater than oleic acid greater than stearic acid. However, alpha-linolenic acid and gamma-linolenic acid at the same concentration were lethal to the cells. The inhibitory effect on growth disappeared upon addition of an antioxidant, alpha-tocopherol. Lipid peroxides derived from unsaturated fatty acids induced marked cell lysis. In the presence of a low concentration (0.005%) of linolenic acid the production of lipid peroxide was lower and no inhibitory effect on the growth was observed, while the activities of peroxisomal enzymes participating in lipid metabolism and that of catalase were significantly increased. These results indicate that the peroxisomal enzyme systems related to the beta-oxidations of fatty acids and the glyoxylate cycle are regulated by unsaturated long-chain fatty acids, including linolenic acid, at low concentrations, as well as by saturated fatty acid in the medium.  相似文献   

17.
Peroxisomal β-oxidation is involved in the degradation of long chain and very long chain fatty acyl-(coenzyme A)CoAs, long chain dicarboxylyl-CoAs, the CoA esters of eicosanoids, 2-methyl-branched fatty acyl-CoAs (e.g. pristanoyl-CoA), and the CoA esters of the bile acid intermediates di- and trihydroxycoprostanic acids (side chain of cholesterol). In the rat, straight chain acyl-CoAs (including the CoA esters of dicarboxylic fatty acids and eicosanoids) are β-oxidized via palmitoyl-CoA oxidase, multifunctional protein-1 (which displays 2-enoyl-CoA hydratase and L-3-hydroxyacyl-CoA, dehydrogenase activities) and peroxisomal thiolase. 2-Methyl-branched acyl-CoAs are degraded via pristanoyl-CoA oxidase, multifunctional protein-2 (MFP-2) (which displays 2-enoyl-CoA hydratase and D-3-hydroxyacyl-CoA dehydrogenase activities) and sterol carrier protein-X (SCPX; displaying 2-methyl-3-oxoacyl-CoA thiolase activity). The side chain of the bile acid intermediates is shortened via one cycle of β-oxidation catalyzed by trihydroxycoprostanoyl-CoA oxidase, MFP-2 and SCPX. In the human, straight chain acyl-CoAs are oxidized via palmitoyl-CoA oxidase, multifunctional protein-1, and peroxisomal thiolase, as is the case in the rat. The CoA esters of 2-methyl-branched acyl-CoAs and the bile acid intermediates, which also possess a 2-methyl substitution in their side chain, are shortened, via branched chain acyl-CoA oxidase (which is the human homolog of trihydroxycoprostanoyl-CoA oxidase), multifunctional protein-2, and SCPX. The rat and the human enzymes have been purified, cloned, and kinetically and stereochemically characterized. 3-Methyl-branched fatty acids such as phytanic acid are not directly β-oxidizable because of the position of the methyl-branch. They are first shortened by one carbon atom through the a-oxidation process to a 2-methyl-branched fatty acid (pristanic acid in the case of phytanic acid), which is then degraded via peroxisomal β-oxidation. In the human and the rat, α-oxidation is catalyzed by an acyl-CoA synthetase (producing a 3-methylacyl-CoA), a 3-methylacyl-CoA 2-hydroxylase (resulting in a 2-hydroxy-3-methylacyl-CoA), and a 2-hydroxy-3-methylacyl-CoA lyase that cleaves the 2-hydroxy-3-methylacyl-CoA into a 2-methyl-branched fatty aldehyde and formyl-CoA. The fatty aldehyde is dehydrogenated by an aldehyde dehydrogenase to a 2-methyl-branched fatty acid while formyl-CoA is hydrolyzed to formate, which is then converted to CO2. The activation, hydroxylation and cleavage reactions and the hydrolysis of formyl-CoA are performed by peroxisomal enzymes; the aldehyde dehydrogenation remains to be localized whereas the conversion of formate to CO2 occurs mainly in the cytosol.  相似文献   

18.
Summary The lipid and sterol content and composition of three lipid fractions (free fatty acids/ sterols, triacylglycerols and sterol/triterpenoid esters) extracted from three stem discs of Pinus sylvestris were assessed to investigate metabolic changes related to heartwood formation. The wood was separated into (1) cambial zone, (2) outer sapwood, (3) inner sapwood, (4) transition zone, (5) outer heartwood and 6) inner heart-wood. The fractions were separated by thin-layer chromatography (TLC) and analysed by gas-liquid chromatography (GLC). The amount of fatty acids of sapwood triacylglycerols was about 1.5% (dry wt.) but a large reduction occurred in the transition zone. In contrast, noticeable amounts of free fatty acids were present only in the heart-wood. The most important fatty acids in the sapwood fractions were 16:0, 18:0, 18:1, 18:2 (the dominant fatty acid in all fractions), 18:3 and 20:3. Together 18:1 and 18:2 formed about 70% of the total triacylglycerol fatty acids. Of the sterol/ triterpenoid esters, 18:2 and 18:3 were predominant. The fatty acid composition of all fractions changed in the transition zone. The sterols found were sitosterol, stigmastanol, campesterol and campestanol. The amount of sterol esters increased towards the heartwood, and the amount of free sterols was lowest in the inner sapwood. Sitosterol was the dominant sterol in both free sterols and sterol esters.  相似文献   

19.
(1) The distributions of four oxidative enzymes were studied in crude brain fractions. (2) Freeze-thaw cycle treatment and frozen storage of homogenate fractions gave apparent enhancement of cytochrome oxidase and NADH cytochrome c reductase activities. (3) Deoxycholate released cytochrome oxidase and NADH cytochrome c reductase activities from low-speed precipitates. The NADH diaphorase was enhanced to a small degree while NADPH cytochrome c reductase was not affected by deoxycholate. (4) Distilled water coupled with a single homogenization released trapped soluble enzymes and mitochondria and gave nearly maximal cytochrome oxidase activity as judged by deoxycholate treatment. The total distilled water activity of NADH cytochrome c reductase was much less than that of deoxycholate-stimulated fractions. The activities of other enzymes were not markedly affected by distilled water although their distribution was changed.  相似文献   

20.
Degradation of the peroxisomal enzymes fatty acyl-CoA oxidase and catalase was studied in hepatocytes isolated from rats treated with clofibrate and from control rats. Hepatocytes were incubated in the absence of amino acids in order to ensure maximal flux through the autophagic pathway and in the presence of cycloheximide to inhibit protein synthesis. (1) Degradation of the two peroxisomal enzymes in hepatocytes from clofibrate-fed rats, but not in hepatocytes from control rats, was much faster than that of other intracellular enzymes. This increased degradation of the peroxisomal enzymes was almost completely prevented by 3-methyladenine, an inhibitor of macroautophagic sequestration. (2) The increased degradation of the peroxisomal enzymes was also inhibited by a long-chain (C16:0) and a very-long-chain (C26:0) fatty acid, but not by C12:0, a medium-chain fatty acid, or by C8:0, a short-chain fatty acid. These results provide direct evidence for the proposal that autophagic sequestration can be highly selective [(1987) Exp. Mol. Pathol. 46, 114-122]. It is concluded that preferential autophagy of peroxisomes is prevented when these organelles are supplied with their fatty acid substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号