首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nagao K  Bannai M  Seki S  Mori M  Takahashi M 《Amino acids》2009,36(3):555-562
It is known that plasma serine and threonine concentrations are elevated in rats chronically fed an essential amino acid deficient diet, but the underlying mechanisms including related gene expressions or serine and threonine concentrations in liver remained to be elucidated. We fed rats lysine or valine deficient diet for 4 weeks and examined the mRNA expressions of serine synthesising (3-phosphoglycerate dehydrogenase, PHGDH) and serine/threonine degrading enzymes (serine dehydratase, SDS) in the liver. Dietary deficiency induced marked elevation of hepatic serine and threonine levels associated with enhancement of PHGDH mRNA expression and repression of SDS mRNA expression. Increases in plasma serine and threonine levels due to essential amino acid deficiency in diet were caused by marked increases in hepatic serine and threonine levels. Proteolytic responses to the amino acid deficiency may be lessened by storing amino radicals as serine and inducing anorexia through elevation of threonine.  相似文献   

3.
The threonine content in blood and urine increased and threonine decomposition ability in liver decreased by feeding lower level of lysine, whereas threonine content in blood and urine decreased and the ability of liver increased gradually with increasing lysine content in diet. These phenomena were owing to the increase of threonine dehydratase activity of liver, which was measured from produced α-ketobutyric acid amount, by excess administration of lysine. The phenomena that threonine content in urine decreased and threonine decomposition ability of liver increased with increasing threonine content in diet when adequate amount of lysine was fed, were also ascribed to the increase of the dehydratase activity.

One m mole of threonine was incubated with liver homogenate in presence of PALP*** at pH 8.2 for 20 and 30 min and α-ketobutyric acid produced was introduced to its 2,4-dinitrophenylhydrazone, which was chromatographed on silica-gel thin-layer plate and determined spectrophotometrically at 395 mμ under N,N-dimethylformamide.

Other enzyme systems relating to threonine catabolism were also investigated, including threonine aldolase, threonine dehydrogenase and ornithine transaminase, showing no significant changes in activities by excess administration of lysine and/or threonine.  相似文献   

4.
The level of hepatic immunoreactive glucose-6-phosphate dehydrogenase protein was found to correlate well with the enzyme activity in adult rats fed the stock laboratory diet in a variety of hormonal conditions. The amount of immunoreactive protein and enzyme activity was 2-fold greater in sexually mature female rats compared with aged matched male animals. However, this difference was absent in diabetic animals, and furthermore although triiodothyronine administration to the diabetic male rat could restore the level of enzyme activity to that of the normoglycaemic animal, it was much less effective in the female animal. In contrast, administration of insulin to the normoglycaemic animal increased the level of glucose-6-phosphate dehydrogenase in the female, but was without effect in the male. These results are discussed in relation to the possible role of thyroid status and steroid sex hormones in the regulation of hepatic glucose-6-phosphate dehydrogenase.  相似文献   

5.
By feeding a carbohydrate diet (without protein) to fasted rats, malic enzyme mRNA activity in the liver was increased to the level in rats fed a carbohydrate and protein diet, whereas the enzyme activity itself was increased to 60% of that level. It appears that malic enzyme mRNA activity was increased by dietary carbohydrate, while dietary protein contributed to an increase in the translation of mRNA. In the animals fed carbohydrate without protein, glucose-6-phosphate dehydrogenase mRNA activity increased to 50% of the level in rats fed the carbohydrate and protein diet, whereas the enzyme activity increased to only 25%. By feeding a protein diet (without carbohydrate), glucose-6-phosphate dehydrogenase activity increased to 65% of the level in rats fed both carbohydrate and protein. This enzyme induction appears to be more dependent on protein than carbohydrate. With the carbohydrate diet, acetyl-CoA carboxylase was induced up to the level in the carbohydrate and protein diet group, whereas fatty acid synthetase was induced to only 33%. Acetyl-CoA carboxylase induction appears to be carbohydrate dependent. On the other hand, isotopic leucine incorporation studies showed that the magnitudes of the enzyme inductions caused by the dietary nutrients should be ascribed to the enzyme synthesis rates rather than the degradation. By fat feeding, the mRNA activities of malic enzyme and glucose-6-phosphate dehydrogenase were markedly decreased along with the enzyme induction. Fat appears to reduce these enzyme inductions before the translation of mRNA.  相似文献   

6.
The lipogenic capacity of rat liver is increased in animals fed a high carbohydrate, fat-free diet or by the administration of 2,2',5'-triiodo-L-thyronine. Underlying this change is a generalized induction of the enzymes involved in lipogenesis, including glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malic enzyme, which together serve to generate the additional NADPH required for increased fatty acid synthesis. This report presents evidence indicating that induction of the hexose-shunt dehydrogenases involves increased enzyme synthesis secondary to elevated enzyme specific mRNA levels, as has previously been shown for malic enzyme. Activities of specific mRNAs, estimated by cell-free translation of hepatic poly(A)-containing RNA in the mRNA dependent rabbit reticulocyte lysate, were compared with enzyme specific activities and relative rates of specific enzyme synthesis. The 2-fold increase in glucose-6-phosphate dehydrogenase specific activity in hyperthyroid rats and the 13-fold increase in rats fed a high carbohydrate, fat-free diet, relative to euthyroid, chow-fed controls were paralleled by comparable increases in the synthetic rates and mRNA levels of this enzyme. Similarly, consonant changes in the rate of enzyme synthesis and concentration of 6-phosphogluconate dehydrogenase mRNA accompanied the 2.5- and 3-fold increases in specific activity of this enzyme observed in response to hormonal and dietary induction, respectively. Thus, both thyroid hormone and carbohydrate feeding appear to induce glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase primarily by increasing the effective cellular concentrations of their respective mRNAs and, consequently, their rates of synthesis.  相似文献   

7.
To determine the relative contributions of glucose, insulin, dexamethasone, and triiodothyronine to the induction of hepatic glucose-6-phosphate dehydrogenase, hepatocytes isolated from normal or adrenalectomized rats, either fasted or fed, were examined in culture. Addition of insulin (42 milliunits/ml, 0.9 microM) and dexamethasone (1 microM) to hepatocytes obtained from 3-day-fasted rats and cultured for 48 h in serum-free Dulbecco's medium resulted in a 7- to 11-fold increase in Glc-6-P dehydrogenase specific activity compared with a 2- to 3-fold increase in activity in control cultures incubated without added hormones. The effects of insulin and dexamethasone were independent of DNA synthesis, dose-dependent, and additive; each contributing about one-half of the total response. Medium glucose was neither sufficient nor necessary for the insulin- or dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Addition of triiodothyronine (10 microM) preferentially blocked the dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Insulin failed to stimulate the induction of Glc-6-P dehydrogenase in hepatocytes obtained from normal fed rats or from fasted and fed adrenalectomized rats. However, insulin caused a significant increase in the Glc-6-P dehydrogenase specific activity of these cells when dexamethasone was concurrently added to the culture medium.  相似文献   

8.
The functional coupling of 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase was investigated in rat liver microsomal vesicles. The activity of both enzymes was latent in intact vesicles, indicating the intraluminal localization of their active sites. Glucose-6-phosphate, a substrate for hexose-6-phosphate dehydrogenase, stimulated the cortisone reductase activity of 11beta-hydroxysteroid dehydrogenase type 1. Inhibition of glucose-6-phosphate uptake by S3483, a specific inhibitor of the microsomal glucose-6-phosphate transporter, decreased this effect. Similarly, cortisone increased the intravesicular accumulation of radioactivity upon the addition of radiolabeled glucose-6-phosphate, indicating the stimulation of hexose-6-phosphate dehydrogenase activity. A correlation was shown between glucose-6-phosphate-dependent cortisone reduction and cortisone-dependent glucose-6-phosphate oxidation. The results demonstrate a close cooperation of the enzymes based on co-localization and the mutual generation of cofactors for each other.  相似文献   

9.
A reduction of blood corticosteroid content was observed in rats blood after the administration of 3-acetylpyridine. The rats given ACTH after 3-acetylpyridine showed a lesser elevation of corticosteroids in the blood and adrenal gland tissue than the intact animals; 3-acetylpyridine diminished the activity of dehydrogenase glucose-6-phosphate in the adrenal glands. The authors suggested that the action of acetylpyridine was realized at the adrenal gland level and consisted in inhibition of the NADP-H2 generation in the dehydrogenase systems.  相似文献   

10.
The induction of NADPH-generating enzymes by polychlorinated biphenyls (PCB) in rats was investigated. The administration of PCB to rats for 3 and 14 days increased the activities of malic enzyme (ME, EC 1.1.1.40), glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49), and 6-phosphogluconate dehydrogenase (6PGD, EC 1.1.1.44) about 2-fold above the control level in the liver. Hepatic mRNA levels of ME, G6PD, and 6PGD, except for G6PD mRNA of the 14-day group, were also elevated to the same degree as the enzyme activities in PCB-treated rats. In rats fed a PCB-containing diet for 1 day, the hepatic mRNA levels of ME and G6PD were elevated prior to the induction of enzyme activity. In the kidney, lung, spleen, heart, and testis, the mRNA levels of ME, G6PD, and 6PGD were not affected by PCB. The induction of hepatic NADPH-generating enzymes would imply an increased demand of NADPH in the liver of rats fed with a PCB-containing diet.  相似文献   

11.
Young adult male rats were fasted for 3 days, then fed a glucose-rich diet, ad libitum. At the end of the fasting period, the specific activity of liver glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase was decreased to 60% of control (nonfasted) levels. After 24 to 72 h of refeeding, the specific activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase increased seven- and twofold, respectively. During the fasting period, the liver lysosome fragility increased, as judged by increased release of bound acid phosphatase and β-N-acetylglucosammidase activity during standard homogenization. Three hours after feeding a carbohydrate-rich diet, a further increase in liver lysosomal fragility was observed that returned to control values prior to the induction of the dehydrogenases. Similarly, the susceptibility of liver lysosomes from fasted rats to increased fragility by the intraperitoneal injection of glucose or galactose was also observed. Prior starvation was not a requisite for labilization of lysosomal membranes by injected glucose, but induction of the pentose phosphate shunt dehydrogenase was not observed.In a group of 6-week old male rats fed a commercial pellet diet throughout, the injection of insulin caused no change in liver lysosomal fragility, though hypoglycemia resulted. Similar animals made diabetic by treatment with Streptozotocin and diabetic rats given insulin, showed no change in liver lysosmal fragility based on the percentage of free to total activities of β-N-acetylglucosaminidase, β-glucuronidase, β-galactosidase, and Cathespin D. However, when adult female rats were fasted for 24 h, then injected with sufficient insulin to produce hypoglycemia, liver lysosomal fragility, based on the release of β-N-acetylglucosaminidase during homogenization, increased nearly threefold. These studies demonstrate that stimulated lysosomal fragility can be initiated by refeeding fasted animals a carbohydrate-rich diet, by intraperitoneal injections of fasted rats with glucose or galactose, or by administering insulin alone to fasted rats. However, hyperglycemia induced by diabetogenic doses of Streptozotocin, or hypoglycemia induced in well-fed animals by insulin injection failed to elicit an enhanced liver lysosomal fragility. Whether induction of the enzymes of lipogenesis by rat liver is dependent upon a prior lysosomal membrane labilization remains to be determined.  相似文献   

12.
To characterise the effects of dietary protein content on threonine metabolism during pregnancy, rats were fed diets containing 18% or 9% protein and then killed at different stages of gestation. Serum threonine concentrations fell significantly faster in the animals fed the diet containing 9% protein when compared to those fed the diet containing 18% protein. On day 4 of gestation the rate of threonine oxidation was higher in maternal liver homogenates prepared from the animals fed the diet containing 18% protein. The rate of threonine oxidation by liver homogenates fell as gestation proceeded in both diet groups. The activity of threonine dehydrogenase in the maternal liver was unaffected by dietary protein content at all stages of gestation. Serine-threonine dehydratase activity in homogenates of the maternal liver was transiently increased during the early stages of gestation in the animals fed high protein diets but was unchanged in the low protein groups. There was an increase in serine-threonine dehydratase activity in the kidney during the later stages of gestation but this was unaffected by the protein content of the maternal diet. These data show that the changes in free threonine concentrations cannot be accounted for through changes in the oxidation rate and suggest that some other factor influences the unusual metabolism of this amino acid during gestation.  相似文献   

13.
Akagi S  Sato K  Ohmori S 《Amino acids》2004,26(3):235-242
Summary. In general, threonine is metabolized by reaction catalyzed by threonine-3-dehydrogenase (TDH), threonine dehydratase (TH) or threonine aldolase (TA). The activities of these three enzymes were compared in the liver of Japanese quails and rats. The animals were fed a standard or threonine rich-diet, or fasted for 3 days. The specific activity of TDH in the liver from quail fed a standard diet was 11 times higher than that in the liver from rats fed a standard diet. The TDH activities in the livers of the fasting and 5% threonine-rich diet groups of quail were 3 and 2 times higher than those in the livers from quail fed the standard diet, respectively. The TH activity in the liver of rats fed a standard diet was 14 times higher than that in the liver of quail fed a standard diet. The TH activity in the rat liver after fasting was 2.3 times higher than that of the standard diet control. The activity of TA in the livers of rat and quail were so low that its role in threonine metabolism in both animals seemed to be negligible. These results suggest that threonine is a ketogenic amino acid in the quail liver, while it is a glucogenic in the rat liver.  相似文献   

14.
15.
Meal-fed Long-Evans rats fed a high fructose diet and exercised for 2-hr daily on a treadmill for three days had lower levels of several hepatic lipogenic enzymes (acetyl CoA carboxylase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, malic enzyme and citrate cleavage enzyme) than did sedentary rats pair-fed the diet. Accumulation of triglycerides in plasma following ingestion of a fat-free, high fructose meal and injection of Triton WR-1339, an inhibitor of plasma triglyceride clearance, was not significantly different in the two groups of animals. All of the hepatic lipogenic enzymes measured, with the exception of citrate cleavage enzyme, attained similar levels in the runners as in the controls after 5 days on the high fructose diet. Thus the exercise appeared to affect the time course of the increase in the levels of activity of most of the lipogenic enzymes but not the final steady state levels attained.  相似文献   

16.
The present study was undertaken to measure the activities of several hepatic enzymes of regulatory importance in the pathways of lipogenesis and gluconeogenesis in rats fed diets marginally deficient in copper (1.2 micrograms Cu/g of diet) and containing either fructose, glucose, or starch as the carbohydrate sources. Although all copper-deficient rats exhibited the characteristic signs of copper deficiency, they were more pronounced in rats fed the diet containing fructose. Except for the activity of phosphoenolpyruvate carboxykinase which was unaffected either by copper deficiency or by the type of dietary carbohydrate, the hepatic activities of glucose-6-phosphate dehydrogenase, malic enzyme, L-alpha-glycerophosphate dehydrogenase and fructose 1,6-diphosphatase were unaffected by copper deficiency but were affected by the type of carbohydrate in the diet. Fructose produced the greatest increase in enzymatic activities, whereas starch produced the least activity and glucose induced an intermediate effect. These results indicate that the deleterious effects of a fructose diet deficient in copper on biochemical and physiological indices could not be due to an immediate metabolite of fructose. However, the involvement of a subsequent metabolite of fructose in the mechanism of copper utilization and/or requirement cannot be excluded.  相似文献   

17.
The nutritional regulation of rat liver glucose-6-phosphate dehydrogenase was studied using a cloned DNA complementary to glucose-6-phosphate dehydrogenase mRNA. The recombinant cDNA clones were isolated from a double-stranded cDNA library constructed from poly(A+) RNA immunoenriched for glucose-6-phosphate dehydrogenase mRNA. Immunoenrichment was accomplished by adsorption of polysomes with antibodies directed against glucose-6-phosphate dehydrogenase in conjunction with protein A-Sepharose and oligo(dT)-cellulose chromatography. Poly(A+) RNA encoding glucose-6-phosphate dehydrogenase was enriched approximately 20,000-fold using these procedures. Double-stranded cDNA was synthesized from the immunoenriched poly(A+) RNA and inserted into pBR322 using poly(dC)-poly(dG) tailing. Escherichia coli MC1061 was transformed, and colonies were screened for glucose-6-phosphate dehydrogenase cDNA sequences by differential colony hybridization. Plasmid DNA was purified from clones which gave positive signals, and the identity of the glucose-6-phosphate dehydrogenase clones was verified by hybrid-selected translation. A collection of glucose-6-phosphate dehydrogenase cDNA plasmids with overlapping restriction maps was obtained. Northern blot analysis of rat liver poly(A+) RNA using nick-translated, 32P-labeled cDNA inserts revealed that the glucose-6-phosphate dehydrogenase mRNA is 2.3 kilobases in length. RNA blot analysis showed that refeeding fasted rats a high carbohydrate diet results in a 13-fold increase in the amount of hybridizable hepatic glucose-6-phosphate dehydrogenase mRNA which parallels the increase in enzyme activity. These results suggest that the nutritional regulation of hepatic glucose-6-phosphate dehydrogenase occurs at a pretranslational level.  相似文献   

18.
M J Stark  R Frenkel 《Life sciences》1974,14(8):1563-1575
The activity of rat liver malic enzyme shows a marked increase when the animals are maintained on a restricted protein diet. Of the NADP-linked dehydrogenases tested (malic enzyme, glucose-6-phosphate dehydrogenase, and isocitrate dehydrogenase), the response is confined only to malic enzyme. Dietary sucrose is not required for the increase in activity, but elevated dietary levels of this disaccharide increase hepatic malic enzyme regardless of dietary protein. Glucose-6-phosphate dehydrogenase activity is increased by dietary sucrose provided adequate dietary protein is supplied. The specificity of the response to lowered dietary protein shown by malic enzyme suggests that the control of the hepatic enzyme is mediated by processes different from those controlling the activity of glucose-6-phosphate dehydrogenase.  相似文献   

19.
We have previously shown that in vivo lipogenesis is markedly reduced in liver, carcass, and in 4 different depots of adipose tissue of rats adapted to a high protein, carbohydrate-free (HP) diet. In the present work, we investigate the activity of enzymes involved in lipogenesis in the epididymal adipose tissue (EPI) of rats adapted to an HP diet before and 12 h after a balanced diet was introduced. Rats fed an HP diet for 15 days showed a 60% reduction of EPI fatty acid synthesis in vivo that was accompanied by 45%-55% decreases in the activities of pyruvate dehydrogenase complex, ATP-citrate lyase, acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and malic enzyme. Reversion to a balanced diet for 12 h resulted in a normalization of in vivo EPI lipogenesis, and in a restoration of acetyl-CoA carboxylase activity to levels that did not differ significantly from control values. The activities of ATP-citrate lyase and pyruvate dehydrogenase complex increased to about 75%-86% of control values, but the activities of glucose-6-phosphate dehydrogenase and malic enzyme remained unchanged 12 h after diet reversion. The data indicate that in rats, the adjustment of adipose tissue lipogenic activity is an important component of the metabolic adaptation to different nutritional conditions.  相似文献   

20.
The effect of concurrent low protein (8% casein) diet and lead (Pb) exposure (1 mg/ml lead acetate in drinking water) on testes of weaned rats up to 90 days of age was investigated Histopathological examination of testes of lead treated rats maintained on low protein diet revealed marked pathological changes associated with greatly reduced succinic dehydrogenase, glucose-6-phosphate dehydrogenase and adenosine triphosphatase activity as revealed histochemically compared to lead treated rats fed normal protein diet. It was concluded that higher accumulation of lead may be responsible for altering the enzyme levels and inducing the testicular degeneration to a greater extent in low protein fed rats compared to their counterpart controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号