首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enzyme preparation that catalyses the deacylation of mono- and di-acyl phospholipids, galactosyl diglycerides, mono- and di-glycerides has been partially purified from potato tubers. The preparation also hydrolyses methyl and p-nitrophenyl esters and acts preferentially on esters of long-chain fatty acids. Triglycerides, wax esters and sterol esters are not hydrolysed. The same enzyme preparation catalyses acyl transfer reactions in the presence of alcohols and also catalyses the synthesis of wax esters from long-chain alcohols and free fatty acids. Gel filtration, DEAE-cellulose chromatography and free-flow electrophoresis failed to achieve any separation of the acyl-hydrolase activities towards different classes of acyl lipids (phosphatidylcholine, monogalactosyl diglyceride, mono-olein, methyl palmitate and p-nitrophenyl palmitate) or any separation of these activities from a major protein component. For each class of lipid the acyl-hydrolase activity was subject to substrate inhibition, was inhibited by relatively high concentrations of di-isopropyl phosphorofluoridate and the pH responses were changed by Triton X-100. The hydrolysis of phosphatidylcholine was stimulated 30-40-fold by Triton X-100. The specific activities of the potato enzyme with galactolipids were at least 70 times higher than those reported for a homogeneous galactolipase enzyme purified from runner bean leaves. The possibility that a single lipolytic acyl-hydrolase enzyme is responsible for the deacylation of several classes of acyl lipid is discussed.  相似文献   

2.
Crude mitochondrial preparations from Neurospora crassa contain high levels of lysophospholipase (EC 3.1.1.5) activity when assayed with lysophosphatidylcholine as a substrate. In mitochondria purified by centrifugation on a sucrose-density gradient this activity is virtually absent. The enzyme was shown to be linked to a contaminating cell fraction which mainly consists of cell-wall material as was demonstrated by electron microscopy and chemical analysis. The enzyme has no absolute Ca2+ requirement but it is slightly stimulated by 10 mM CaCl2. The pH optimum is 5.8 in presence of CaCl2 and is shifted to 4.2 when EDTA is present. In contrast to other lysophospholipases this enzyme is only slightly inhibited by deoxycholate. This detergent is able to release part of the lysophospholipase activity from the wall fragments without producing an increase in specific activity. The enzyme is possibly secreted by the cells as high lysophospholipase activities were also found in the culture medium.  相似文献   

3.
Abstract: Lysophospholipids are generated during the turnover and breakdown of membrane phospholipids. We have identified and partially characterized three enzymes involved in the metabolism of lysophospholipids in human brain, namely, lysophospholipase, lysophospholipid:acyl-CoA acyltransferase (acyltransferase), and lysophospholipid:lysophospholipid transacylase (transacylase). Each enzyme displayed comparable levels of activity in biopsied and autopsied human brain, although in all cases the activity was somewhat lower in human than that in rat brain. All three enzymes were localized predominantly in the particulate fraction, with lysophospholipase possessing the greatest activity followed by acyltransferase and transacylase. Lysophosphatidylcholine possessed a Km in the micromolar range for lysophospholipase and transacylase, and in the millimolar range for acyltransferase, whereas arachidonyl-CoA displayed a Km in the micromolar range for acyltransferase. The three enzymes differed in their pH optima, with lysophospholipase being most active at pH 8.0, transacylase at pH 7.5, and acyltransferase at pH 6.0. Both bromophenacyl bromide and N-ethylmaleimide inhibited lysophospholipase activity and, to a lesser extent, that of acyltransferase and transacylase. None of the enzyme activities were affected by the presence of dithiothreitol or EDTA, although particulate lysophospholipase was activated approximately two-fold by the addition of 5 mM MgCl2 or CaCl2 but not KCl. Transacylating activity was stimulated by CoA, the EC50 of activation being 6.8 µM. Acyltransferase displayed an approximately threefold preference for arachidonyl-CoA over palmitoyl-CoA, whereas the acylation rate of different lysophospholipids was in the order lysophosphatidylinositol > 1-palmitoyl lysophosphatidylcholine > 1-oleoyl lysophosphatidylcholine ? lysophosphatidylserine > lysophosphatidylethanolamine. This, and the preference of human brain phospholipase A2 for phosphatidylinositol, suggests that this phospholipid may possess a higher turnover rate than the other phospholipid classes examined. Human brain homogenates also possessed the ability to transfer fatty acid from lysophosphatidylcholine to lysophosphatidylethanolamine. In addition, we also present evidence that diacylglycerophospholipids can act as acyl donors for the transacylation of lysophospholipids. We have therefore demonstrated the presence of, and partially characterized, three enzymes that are involved in the metabolism of lysophospholipids in human brain. Our results suggest that lysophospholipase may be the major route by which lysophospholipids are removed from the cell membrane in human brain. However, all three enzymes likely play an important role in the remodeling of membrane composition and thereby contribute to the overall functioning of membrane-associated processes.  相似文献   

4.
Phospholipase B from baker’s yeast (Saccharomyces cerevisiae) was purified by acid treatment of the crude extract, ammonium sulfate fractionation, and column chromatographies on DEAE-Sepharose CL-6B, Sepharose 4B, and Bio-Gel HTP. The purified preparation had lysophospholipase activity and phospholipase B activity in a ratio of 16:1. The optimum pH of both activities was 3.5 ~ 4.0. The enzyme was a glycoprotein and its molecular size was somewhat heterogeneous, ranged from about 280,000 to 420,000 by gel filtration. Phospholipase B activity was strongly stimulated by 0.1 % DOC, but lysophospholipase activity was completely inhibited by the detergent. Neither activity was stimulated by Ca2+ and both were inhibited by SDS, Triton X-100, and Fe3+. The enzyme hydrolyzed the acyl ester bonds of phosphatidylcholine sequentially, first the 2-acyl and then the 1-acyl groups. The Km values for phosphatidylcholine and lysophosphatidylcholine were 0.63 mm and 0.05 mm, respectively.  相似文献   

5.
Water-soluble phospholipase B was purified to homogeneity from Torulaspora delbrueckii cell washings. The washings were concentrated by ultrafiltration, and then a fraction with phospholipase B activity was precipitated with ammonium sulfate, and purified by sequential column chromatographies on Octyl-Sepharose CL-4B, DEAE-Sephacel, and Sepharose 6B. The molecular weight of the enzyme was estimated to be 170,000~200,000 by SDS-polyacrylamide gel electrophoresis and by gel filtration with a Sephadex G-200 column. The isoelectric point of the enzyme was 4.0. The purified enzyme had two pH optima at pH 2.5 and pH 7.5. The activity at acidic pH was greatly stimulated by the divalent metal ions tested, but the activity at alkaline pH was stimulated mainly by Ca2+ and Fe2+. The purified enzyme had both lysophospholipase activity and phospholipase B activity in a ratio of 37:1 at acidic pH and 73:1 at alkaline pH. The amino acid composition of the enzyme was characterized by high contents of Asp, Ser, Leu, and Gly.  相似文献   

6.
A potato (Solanum tuberosum) phospholipid acyl-hydrolase, which - in the pH range 7.5 to 8.5—is at least 10,000 times more effective with phospholipids than with galactolipids, has been purified and characterized. It is a soluble enzyme readily distinguished from a neutral lipid lipase and a third lipid acyl-hydrolase which, while acting on phospholipid, shows a decided preference for glyceryl monoolein. The phospholipase in question has a pH optimum of 8.5, is stimulated by Ca2+ at pH above 7.5 and inhibited by Ca2+ at lower pH, is not dependent on detergents although stimulated by Triton X-100 to a moderate extent, and remains very active at temperatures close to zero. The phospholipids of intact potato mitochondria are highly susceptible to degradation by potato phospholipase, and it is suggested that this enzyme is involved in the extensive lipid breakdown which occurs in fresh potato slices following cutting, and in the deterioration of mitochondria during their preparation and aging.  相似文献   

7.
An extracellular phospholipase D from Actinomadura sp. Strain No. 362 was purified about 430-fold from the culture filtrate. The purified enzyme preparation was judged to be homogeneous on polyacrylamide gel electrophoresis. The molecular weight and isoelectric point of the enzyme were estimated to be about 50,000—60,000 and 6.4, respectively. The enzyme was most active at pH 5.5 and 50°C in the presence of Triton X-100, but showed the highest activity at pH 7.0 and 60 — 70°C in its absence. The enzyme was stable up to 30°C at pH 7.2 and also stable in the pH range of 4.0 to 8.0 on 2 hr incubation at 25°C. With regard to substrate specificity, this enzyme hydrolysed lecithin best among the phospholipids tested. It was activated by Fe3 +, Al3+, Mn2 +, Ca2 +, diethyl ether, sodium deoxycholate and Triton X-100, but was inhibited by cetyl pyridinium chloride and dodecylsulfate.  相似文献   

8.
The first step in the production of eicosanoids and platelet-activating factor is the hydrolysis of arachidonic acid from membrane phospholipid by phospholipase A2. We previously purified from the macrophage cell line RAW 264.7 an intracellular phospholipase A2 that preferentially hydrolyzes sn-2-arachidonic acid. The enzyme exhibits a molecular mass of 100 kDa and an isoelectric point of 5.6. When assayed for other activities, the phospholipase A2 was found to exhibit lysophospholipase activity against palmitoyllysoglycerophosphocholine, and both activities copurified to a single band on silver-stained sodium dodecyl sulfate-polyacrylamide gels. An antibody against the macrophage enzyme was found to quantitatively immunoprecipitate both phospholipase A2 and lysophospholipase activities from a crude cytosolic fraction. When the immunoprecipitated material was analyzed on immunoblots, a single band at 100 kDa was evident, further suggesting that a single protein possessed both enzyme activities. When assayed as a function of palmitoyllysoglycerophosphocholine concentration and plotted as a double-reciprocal plot, two different slopes were apparent, corresponding to concentrations above and below the critical micellar concentration (7 microM) of the substrate. Above the critical micellar concentration, lysophospholipase exhibited an apparent Km of 25 microM and a Vmax of 1.5 mumol/min/mg. Calcium was not required for lysophospholipase activity, in contrast to phospholipase A2 activity. The enzyme, when assayed as either a phospholipase A2 or lysophospholipase, exhibited nonlinear kinetics beyond 1-2 min despite low substrate conversion. Readdition to more substrate after the activity plateaued did not result in further enzyme activity, ruling out substrate depletion. Readdition of enzyme, however, resulted in another burst of enzyme activity. The results are not consistent with product inhibition, but suggest that the enzyme may be subject to inactivation during catalysis.  相似文献   

9.
Lysophospholipase activity in brain subcellular fractions was measured by the release of myristic acid from 1-myristoylglycerophosphocholine or through the formation of [32P]glycerophosphocholine from [32P]lysophosphatidylcholine. Although the lysophospholipase activity was highest in microsomes, considerable enzyme activity was also found in other subcellular membrane fractions. The pH optimum for the microsomal enzyme was around 7, whereas the synaptosomes and non-synaptic plasma membranes exhibited a pH maximum around 8. Although the enzyme did not require divalent cations for activity, divalent cations (1 mM) such as Hg2+, Cu2+, and Zn2+ inhibited potently the enzyme activity. Enzyme activity was also partially inhibited by both saturated and polyunsaturated fatty acids (25–200 M), and the inhibition seemed to be greater in the membrane than in the cytosolic fractions. Ionic detergents such as deoxycholate and taurocholate inhibited the lysophospholipase. On the other hand, the effect of Triton X-100 was biphasic, i.e., stimulation at concentrations below 100 g/mg protein and inhibition at higher concentrations. Addition of cholesterol (50–250 g/ml), but not cholesteryl esters, also potently inhibited enzyme activity. The presence of active lysophospholipase(s) in brain is probably an important mechanism for preventing unnecessary accumulation of lysophospholipids which may exert a deleterious effect on the membranes because, of their detergent properties.  相似文献   

10.
The present study investigates the efficiency of Aspergillus niger to produce invertase, an industrially important enzyme by using powdered stem of Cympopogan caecius (Lemon grass) as sole substrate and sole carbon source for the microorganism. The molecular weight of invertase was estimated to be 66–70 kDa by sodium do decyl sulphate poly acrylamide gel electrophoresis (SDS PAGE). The production of the enzyme was studied at different pH scales ranging from pH 4.0 to 7.0 at a constant temperature of 30°C and 2% substrate concentration. The maximum production of invertase (specific activity −0.0516 μk/mg protein) was obtained at pH 5.5 at 30°C temperature, and incubation for 48 h. The activity was found to be stable at pH 5.5 for 30 min. The enzyme was found to be stable in the temperature range of 20–55°C. The effect of divalent metal ions Cu2+, Fe2+, Co2+ on the activity of the enzyme invertase showed that these ions affected the activity by a certain factor. The study can be further industrially exploited in a country-like India where lemon grass is found in plenty and can be used as substrate for enzyme production. Moreover, the preparation of the substrate is also a simple process.  相似文献   

11.
—Lipid-free extracts of rat and human brain have been prepared and shown to contain phospholipase A1 and A2 activities and a lysophospholipase. The phospholipase Aj activity has pH optima of 4·2 and 4·6 in rat and human brain, respectively; it can be partially purified and isolated in high yields by dialysing the extracts at low pH. The purified preparations hydrolyse the ester bond at the 1-position in lecithin, phosphatidyl-ethanolamine and phosphatidylserine, but have little or no action on triglyceride or cholesterol ester. An assay system for the enzyme is described. Phospholipase A2 activity is optimal at pH 5·5 in rat brain extracts and at pH 5·0 in extracts of human brain. The phospholipase A2 activity of human cerebral cortex is largely unaffected by heating extracts at 70°C for 5 min, whereas this treatment substantially inactivates phospholipase A1 and completely destroys lysophospholipase. Phospholipase A1 is widely distributed in both grey and white matter of human brain and is also present in peripheral nerve. Phospholipase A2 activity is lower than A1 in all regions of the CNS examined so far, and is absent from peripheral nerve. Neither enzyme appears to require Ca2+ but both are inhibited by di-isopropylfluorophosphate (DFP, 2 × 10?6 m) and thus differ from phospholipase A of pancreas. These studies confirm that the phospholipase A1 and A2 activities in brain are due to separate enzymes.  相似文献   

12.
13.
14.
A Ca2+-dependent lysophospholipase D activity in microsomal preparations from the rabbit kidney medulla hydrolyzes the choline moiety from 1-O-[9,10-3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF) to form 1-O-[9,10-3H]hexadecyl-2-lyso-sn-glycero-3-P; the latter is subsequently dephosphorylated by a phosphohydrolase to 1-O-[9,10-3H]hexadecyl-sn-glycerol. Sodium vanadate, which is known to inhibit phosphohydrolases, reduces the proportion of hexadecylglycerol and increases the formation of hexadecyl-lysoglycerophosphate. Essentially no hydrolysis occurs when the sn-2 position of the hexadecyllysoGPC substrate contains an acyl moiety. The lysophospholipase D in rabbit kidney is of microsomal origin and has a broad pH optimum between 8.0 and 8.8, with the activity decreasing sharply from pH 7.6 to 7.2. Wykle et al. (Biochim. Biophys. Acta 619 (1980) 58-67) have previously demonstrated the existence of a microsomal lysophospholipase D (specific for ether lipid substrates) in rat tissues that requires Mg2+ and exhibits a pH optimum of 7.2; high activities of the Mg2+-dependent lysophospholipase D were found in liver and brain, but not in kidney. In contrast to the Mg2+-dependent lysophospholipase D in rat tissues, the renal enzyme from rabbits requires Ca2+ (5 mM), whereas Mg2+ (5 mM) exhibits little stimulatory action. Under optimal assay conditions (0.1 M Tris-HCl (pH 8.4)/5 mM CaCl2), lysophospholipase D in the rabbit kidney medulla has an activity of 2.7 nmol/min per mg protein compared to 0.9 nmol/min per mg protein for the lysophospholipase D in the rat kidney medulla (0.1 M Tris-HCl (pH 7.2)/5 mM MgCl2). The Ca2+-dependent lysophospholipase D is highest in the liver and kidney medulla from rabbits, but is very low in rat tissues; similar activities were found in male and female rabbits. Our data indicate that the divalent metal ion requirements for expression of maximum lysophospholipase D activities can differ markedly among animal species and also suggest the microsomal Ca2+-dependent lysophospholipase D is an important catabolic route for lyso-PAF metabolism in rabbit renomedullary tissue.  相似文献   

15.
The hydrolysis of endogenous phosphatidyl ethanolamine and lecithin in rat liver mitochondria has been studied by using mitochondria from rats injected with ethanolamine-1,2-(14)C or choline-1,2-(14)C. A phospholipase A-like enzyme has been demonstrated, which catalyzes the hydrolysis of one fatty acid ester linkage in phosphatidyl ethanolamine and lecithin. Phosphatidyl ethanolamine is hydrolyzed in preference to lecithin and the main reaction products are free fatty acids and lysophosphatidyl ethanolamine. The further breakdown of lysophospholipids appears to be limited in mitochondria, which indicates that lysophospholipase activity is mainly located extramitochondrially. The enzymic system is greatly stimulated by calcium ions, and also slightly by magnesium ions, while EDTA inhibits it almost completely. These findings are discussed in relation to previous observations on the effect of calcium and of EDTA on the functions of mitochondria. The possible function of the mitochondrial phospholipase for the formation of phospholipids with special fatty acids at the alpha- and -position is discussed.  相似文献   

16.
Phospholipase and lysophospholipase activity of rat eosinophil leukocytes   总被引:2,自引:0,他引:2  
Previous studies have shown the high lysophospholipase activity of rat eosinophilic leukocytes and used this enzyme to measure the rise in eosinophilic population of peripheral tissues caused by parasitic infections. This report details the methods and results of an investigation showing the presence in the same cells of high phospholipase (PLA) activity. Unfractionated and metrizamide-purified peritoneal eosinophil preparations were assayed using a mixed micelle substrate (6/15 mM lecithin/Triton X-100) at experimentally determined pH (6.4) and ionic strength (I=0.2) optima: the attendant reaction products included free fatty acids and organic P in a 2/1 molar proportion with a correspondent loss in the initial phospholipid concentration. The organic P fragment was further characterized as GPC (glycerylphosphorylcholine) by quantitative precipitation and acid hydrolysis. Estimates of PLA activity averaged 5 micromol/h/10(6) unfractionated eosinophils and metrizamide-purified eosinophil preparations. Paired tests for PLA and LysoPLA on unfractionated and enriched cell preparations, cytosolic extracts, and chromatographic fractions yielded similar activity ratios, supporting the inference of a close association of the two activities which could also be confirmed for the major tissues of eosinophil production and distribution.  相似文献   

17.
A transacylase that converts 1-palmitoyl lysophosphatidylcholine to dipalmitoyl phosphatidylcholine was demonstrated in the rat gastric mucosa. This enzyme required neither ATP or CoA nor bile salt and detergent for its activity. The enzyme preparation also exhibited powerful lysophospholipase activity. The transacylase and lysophospholipase were both located in the cytosol fraction, and their activities remained associated at a constant ratio throughout the purification steps, including the isoelectrofocusing procedure. They responded similarly with respect to the addition of metal ions, bile salt, detergent, and heat treatment. Both enzyme activities also exhibited similar apparent Km values for lysophosphatidylcholine. These observations suggest that both the lysophospholipase and transacylase activities may reside in the same enzyme.  相似文献   

18.
Lysophospholipase of Escherichia coli.   总被引:4,自引:0,他引:4  
A lysophospholipase from Escherichia coli cells was purified about 1,500-fold to near homogeneity by extraction with Tris-HCl buffer, streptomycin treatment, (NH4)2SO4 fractionation, column chromatographies on Sephadex G-200, DEAE-cellulose and hydroxylapatite-cellulose, and polyacrylamide gel electrophoresis. The final preparation had a molecular weight of 39,500 plus or minus 500. The enzyme hydrolyzes 1-acylglycerylphosphorylethanolamine, 2-acylglycerylphosphorylethanoiamine, and 1-acylglycerylphosphorylglycerol, but does not attack diacylphospholipids with long chain fatty acids, such as phosphatidylethanolamine and phosphatidylglycerol. The enzyme does not show any esterase activity against p-nitrophenyl acetate or palmitate. Although it does not hydrolyze triacylglycerol or diacylglycerol, it hydrolyzes 1-acylglycerol at almost the same rate as 1-acyl-sn-glycerol-3-phosphorylethanolamine. Results indicated that the acyl-hydrolyzing activities toward monoacyl-glycerylphosphorylethanolamine and monoacylglycerol belong to the same enzyme. In general, acidic and nonionic detergents inhibited the reaction. This lysophospholipase preparation hydrolyzes the monomolecular and micellar forms of lysophospholipids as well as of monoacylglycerol. The monomolecular and micellar forms of Triton X-100 both inhibited the hydrolyses of lysophospholipids and monoacylglycerol.  相似文献   

19.
The production in vitro of cutin hydrolyzing enzymes by five isolates of B. cinerea was studied, using cutin of tomato fruits as a carbon source. Chemical depolymerisation of the cutin yielded 10,16-dihydroxyhexadecanoic acid as the main component. The same fatty acid was found after incubation of cutin with a crude enzyme preparation from a culture filtrate of B. cinerea. Hydrolysis was optimal at pH 5.5–6.0. In cultures with glucose as the only carbon source no cutinase activity was detected. Crude enzyme preparations which hydrolyzed cutin, also hydrolyzed para-nitrophenylbutyrate, with an optimum activity at pH 8. All five isolates showed para-nitrophenylbutyrate hydrolyzing activity when grown on tomato cutin, but the activity varied with the isolate used. No correlation was found between para-nitrophenylbutyrate-hydrolyzing activity of an isolate and its production of small lesions on young tomato fruits.  相似文献   

20.
Lysophospholipase released from rat platelets upon activation with thrombin has been purified to near homogeneity by sequential column chromatography on heparin-Sepharose, CM-Sephadex C-50, and TSK gel G2000SW. The final preparation showed a single band with a molecular mass of 32,000 daltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by silver staining. The purified enzyme was heat-labile and inactivated after 5 min at 60 degrees C. It showed a broad pH optimum (pH 6-10) and required a divalent cation, such as Ca2+, for the optimal activity. Appreciable activity, however, was observed in the presence of EDTA. Lysophospholipase activity was inhibited by diisopropylfluorophosphate and dithiothreitol. This enzyme activity was retained by a concanavalin A-Sepharose column and eluted with methyl-alpha-D-mannoside. Treatment of lysophospholipase with peptide: N-glycosidase F gave degraded products, suggesting that this protein contain N-linked carbohydrate chains. The purified enzyme was specific to 1-acyl-sn-glycero-3-phospho-L-serine; none of lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol, and 1-acyl-sn-glycero-3-phospho-D-serine was hydrolyzed appreciably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号