首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of allosamidin (1) and methylallosamidin (2), novel insect chitinase inhibitors, were elucidated as 1 and 2 by acid hydrolysis experiments and analyses of 2d-NMR spectra. They are unique basic pseudotrisaccharides consisting of 2-acetamido-2-deoxy-d-allose (N-acetyl-d- allosamine) and a novel aminocyclitol derivative (3), termed allosamizoline.  相似文献   

2.
l-Threonine production by strain BB-69, which was derived from Brevibacterium flavum No. 2247 as a α-amino-β-hydroxyvaleric acid resistant mutant and produced about 12 g/liter of l-threonine, was reduced by the addition of l-lysine or l-methionine in the culture medium. Many of lysine auxotrophs but not methionine auxotrophs derived from strain B–2, which produced about 7 g/liter of l-threonine, produced more l-threonine than the parental strain. Except only one methionine auxotroph (BBM–21), none of lysine and methionine auxotrophs derived from BB–69 produced more l-threonine than the parental strain. Homoserine dehydrogenase of crude extract from strain B–2 was inhibited by l-threonine more strongly than that from BB–69. Strain BBM–21, a methionine auxotroph derived from BB–69, produced about 18 g/liter of l-threonine, 50% more than BB–69, while accumulation of homoserine decreased remarkably as compared with BB–69. l-Threonine production by BBM–21 was increased by the addition of l-homoserine, a precursor of l-threonine, while that by BB–69 was not. No difference was found among BBM–21, BB–69 and No. 2247 in the degree of inhibition of homoserine kinase by l-threonine. l-Threonine production by revertants of BBM–21, that is, mutants which could grow without methionine, were all lower than that of BBM–21. Correlation between l-threonine production and methionine or lysine auxotrophy was discussed.  相似文献   

3.
Okaramines produced by Penicillium simplicissimum AK-40 activate l-glutamate-gated chloride channels (GluCls) and thus paralyze insects. However, the okaramine binding site on insect GluCls is poorly understood. Sequence alignment shows that the equivalent of residue Leucine319 of the okaramine B sensitive Bombyx mori (B. mori) GluCl is a phenylalanine in the okaramine B insensitive B. mori γ-aminobutyric acid-gated chloride channel of the same species. This residue is located in the third transmembrane (TM3) region, a location which in a nematode GluCl is close to the ivermectin binding site. The B. mori GluCl containing the L319F mutation retained its sensitivity to l-glutamate, but responses to ivermectin were reduced and those to okaramine B were completely blocked.  相似文献   

4.
5.
Bacillus stearothermophilus CGTase had a wider acceptor specificity than Bacillus macerans CGTase did and produced large amounts of transfer products of various acceptors such as D-galactose, D-mannose, D-fructose, D- and L-arabinose, d- and L-fucose, L-rhamnose, D-glucosamine, and lactose, which were inefficient acceptors for B. macerans CGTase. The main component of the smallest transfer products of lactose was assumed to be α-D-glucosyl O-β-D-galactosyl-(l→4)-β-D-glucoside.  相似文献   

6.
Homoserine dehydrogenases and aspartokinases in l-threonine- or l-threonine and l-lysine-producing mutants derived from Corynebacterium glutamicum KY 9159 (Met?) were studied with respect to the sensitivity to the inhibition by end products, l-threonine and l-lysine. The activities of homoserine dehydrogenases in the mutants which produced l-threonine or l-threonine and l-lysine were slightly less susceptible to the inhibition by l-threonine than the activity in the parent strain, KY 9159. The aspartokinases in the threonine-producing mutants, KY 10484 and KY 10230, which were resistant to α-amino-β-hydroxylvaleric acid (AHV, a threonine analog) and more sensitive to thialysine (a lysine analog) than the parent, were sensitive to the concerted feedback inhibition by l-lysine and l-threonine by about the same degree as KY 9159. The aspartokinase in an AHV- and thialysine-resistant mutant, KY 10440, which was derived from KY 10484 and produced about 14 mg/ml of l-threonine in a medium containing 10% glucose was less susceptible to the concerted feedback inhibition than KY 10484 or KY 9159, although the activity was still under the feedback control. In the parent strain, l-threonine activated aspartokinase activity in the absence of ammonium sulfate, an activator of the enzyme, but partially inhibited the activity in the presence of the salt. On the other hand, the enzyme of KY 10440 was activated by l-threonine either in the presence or in the absence of the salt. In another AHV- and thialysine-resistant mutant, KY 10251, which was derived from KY 10230 and produced both 9 mg/ml of l-threonine and 5/5 mg/ml of l-lysine, l-threonine and l-lysine simultaneously added hardly inhibited the activity of aspartokinase.

Implications of these results are discussed in relation to l-threonine or l-lysine production, AHV or thialysine resistance and regulation of l-threonine biosynthesis in these mutants.  相似文献   

7.
Six strains of bacteria belonging to Vibrio and Pseudomonas were selected as good producers of L-DOPA from L-tyrosine out of various bacteria. The condition for the formation of L-DOPA by Vibrio tyrosinaticus ATCC 19378 was examined and the following results were obtained. (1) Intermittent addition of L-tyrosine in small portions gave higher titer of L-DOPA than single addition of L-tyrosine. (2) Higher amount of L-DOPA was produced in stationary phase of growth than in logarithmic phase. (3) Addition of antioxidant, chelating agent or reductant such as L-ascorbic acid, araboascorbic acid, hydrazine, citric acid and 5-ketofructose increased the amount of L-DOPA formed. (4) L-Tyrosine derivatives such as N-acetyl-L-tyrosine amide, N-acetyl-L-tyrosine, L-tyrosine amide, L-tyrosine methyl ester and L-tyrosine benzyl ester were converted to the corresponding L-DOPA derivatives.

In the selected condition about 4 mg/ml of L-DOPA was produced from 4.3 mg/ml of L-tyrosine.  相似文献   

8.
Tyrosine phenol lyase catalyzes a series of α,β-elimination, β-replacement and racemization reactions. These reactions were studied with intact cells of Erwinia herbicola ATCC 21434 containing tyrosine phenol lyase.

Various aromatic amino acids were synthesized from l-serine and phenol, pyrocatechol, resorcinol or pyrogallol by the replacement reaction using the intact cells. l(d)-Tyrosine, 3,4-dihydroxyphenyl-l(d)-alanine (l(d)-dopa), l(d)-serine, l-cysteine, l-cystine and S-methyl-l-cysteine were degraded to pyruvate and ammonia by the elimination reaction. These amino acids could be used as substrate, together with phenol or pyrocatechol, to synthesize l-tyrosine or l-dopa via the replacement reaction by intact cells. l-Serine and d-serine were the best amino acid substrates for the synthesis of l-tyrosine or l-dopa. l-Tyrosine and l-dopa synthesized from d-serine and phenol or pyrocatechol were confirmed to be entirely l-form after isolation and identification of these products. The isomerization of d-tyrosine to l-tyrosine was also catalyzed by intact cells.

Thus, l-tyrosine or l-dopa could be synthesized from dl-serine and phenol or pyrocatechol by intact cells of Erwinia herbicola containing tyrosine phenol lyase.  相似文献   

9.
l-Alanine adding enzymes from Bacillus subtilis and Bacillus cereus which catalyzed l-alanine incorporation into UDPMurNAc were partially purified and the properties of the enzymes were examined. The enzyme from B. subtilis was markedly stimulated by reducing agents including 2-mercaptoethanol, dithiothreitol, glutathione and cysteine. Mn2+ and Mg2+ activated l-alanine adding activity and their optimal concentrations were 2 to 5 mm and 10 mm, respectively. The optimum pH was 9.5 and the Km for l-alanine was 1.8×10?4m. l-Alanine adding reaction was strongly inhibited by p-chloromercuribenzoate and N-ethyl-maleimide. Among glycine, l- and d-amino acids and glycine derivatives, glycine was the most effective inhibitor of the l-alanine adding reaction. The enzyme from B. cereus was more resistant to glycine than that from B. subtilis. Glycine was incorporated into UDPMurNAc in place of l-alanine, and the Ki for glycine was 4.2×l0?3m with the enzyme from B. subtilis. From these data, the growth inhibition of bacteria by glycine is discussed.  相似文献   

10.
A bacterium that stereospecifically produces l-valine from 5-isopropylhydantoin was isolated + from soil. It was identified as Bacillus brevis and given the number AJ-12299. l-Valine productivity from l-, d- or dl-5-isopropylhydantoin by B. brevis AJ-12299 was rather low because this bacterium had l-valine degrading-activity. In contrast, the productivity was improved by a mutant the l-valine degradation pathway of which was genetically blocked, and the 5-isopropylhydantoin consumed was stoichiometrically converted to l-valine. The optimal temperature and pH of the reaction were 30°C and 7.0~7.5. The enzyme involved in the reaction was inducible and was strongly induced by the addition of 5-isopropylhydantoin. In addition to l-valine production, this bacterium also produced various aliphatic and aromatic l-amino acids from the corresponding 5-substituted hydantoins.  相似文献   

11.
An X-ray crystal structural analysis revealed that (2S,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-L-isoleucine; Ac-L-Ile) and (2R,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-D-alloisoleucine; Ac-D-aIle) formed a molecular compound containing one Ac-L-Ile molecule and one Ac-D-aIle molecule as an unsymmetrical unit. This molecular compound is packed with strong hydrogen bonds forming homogeneous chains consisting of Ac-L-Ile molecules or Ac-D-aIle molecules and weak hydrogen bonds connecting these homogeneous chains in a fashion similar to that observed for Ac-L-Ile and Ac-D-aIle. Recrystallization of an approximately 1:1 mixture of Ac-L-Ile and Ac-D-aIle from water gave an equimolar molecular compound due to its lower solubility than that of Ac-D-aIle or especially Ac-L-Ile. The results suggest that the equimolar mixture of Ac-L-Ile and Ac-D-aIle could be obtained from an Ac-L-Ile-excess mixture by recystallization from water.  相似文献   

12.
Growth of Brevibacterium flavum FA-1-30 and FA-3-115, L-lysine producers derived from Br. flavum No. 2247 as S-(2-aminoethyl)-L-cysteine (AEC) resistant mutants, was inhibited by α-amino-β-hydroxyvaleric acid (AHV), and this inhibition was reversed by L-threonine. All the tested AHV resistant mutants derived from FA-1-30 accumulated more than 4 g/liter of L-threonine in media containing 10% glucose, and the best producer, FAB-44, selected on a medium containing 5 mg/ml of AHV produced about 15 g/liter of L-threonine. Many of AHV resistant mutants selected on a medium containing 2 mg/ml of AHV accumulated L-lysine as well as L-threonine, AHV resistant mutants derived from FA-3-115 produced 10.7 g/liter of L-threonine maximally. AEC resistant mutants derived from strains BB–82 and BB–69, which were L-threonine producers derived from Br. flavum No. 2247 as AHV resistant mutants, did not produce L-threonine more than the parental strains, and moreover, many of them did not accumulate L-threonine but L-lysine. Homoserine dehydrogenases of crude extracts from L-threonine producing AHV resistant mutants derived from FA–1–30 and FA–3–115 were insensitive to the inhibition by L-threonine, and those of L-threonine and L-lysine producing AHV resistant mutants from FA–1–30 were partially sensitive.

Correlation between L-threonine or L-lysine production and regulations of enzymatic activities of the mutants was discussed.  相似文献   

13.
Regulatory properties of the enzymes in l-tyrosine and l-phenyalanine terminal pathway in Corynebacterium glutamicum were investigated. Prephenate dehydrogenase was partially feedback inhibited by l-tyrosine. Prephenate dehydratase was strongly inhibited by l-phenylalanine and l-tryptophan and 100% inhibition was attained at the concentrations of 5 × 10?2mm and 10?1mm, respectively. l-Tyrosine stimulated prephenate dehydratase activity (6-fold stimulation at 1 mm) and restored the enzyme activity inhibited by l-phenylalanine or l-tryptophan. These regulations seem to give the balanced synthesis of l-tyrosine and l-phenyl-alanine. Prephenate dehydratase from C. glutamicum was stimulated by l-methionine and l-leucine similarly to the enzyme in Bacillus subtilis and moreover by l-isoleucine and l-histidine. C. glutamicum mutant No. 66, an l-phenylalanine producer resistant to p-fluorophenyl-alanine, had a prephenate dehydratase completely resistant to the inhibition by l-phenylalanine and l-tryptophan.  相似文献   

14.
Regulatory properties of chorismate mutase from Corynebacterium glutamicum were studied using the dialyzed cell-free extract. The enzyme activity was strongly feedback inhibited by l-phenylalanine (90% inhibition at 0.1~1 mm) and almost completely by a pair of l-tyrosine and l-phenylalanine (each at 0.1~1 mm). The enzyme from phenylalanine auxotrophs was scarcely inhibited by l-tyrosine alone but the enzyme from a wild-type strain or a tyrosine auxotroph was weakly inhibited by l-tyrosine alone (40~50% inhibition, l-tyrosine at 1 mm). The enzyme activity was stimulated by l-tryptophan and the inhibition by l-phenylalanine alone or in the simultaneous presence of l-tyrosine was reversed by l-tryptophan. The Km value of the reaction for chorismate was 2.9 } 10?3 m. Formation of chorismate mutase was repressed by l-phenylalanine. A phenylalanine auxotrophic l-tyrosine producer, C. glutamicum 98–Tx–71, which is resistant to 3-amino-tyrosine, p-aminophenylanaine, p-fluorophenylalanine and tyrosine hydroxamate had chorismate mutase derepressed to two-fold level of the parent KY 10233. The enzyme in C. glutamicum seems to have two physiological roles; one is the control of the metabolic flow to l-phenylalanine and l-tyrosine biosynthesis and the other is the balanced partition of chorismate between l-phenylalanine-l-tyrosine biosynthesis and l-tryptophan biosynthesis.  相似文献   

15.
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively.  相似文献   

16.
l-Fucose (l-galactose) dehydrogenase was isolated to homogeneity from a cell-free extract of Pseudomonas sp. No 1143 and purified about 380-fold with a yield of 23 %. The purification procedures were: treatment with polyethyleneimine, ammonium sulfate fractionation, chromatographies on phenyl-Sepharose and DEAE-Sephadex, preparative polyacrylamide gel electrophoresis, and gel filtration on Sephadex G-100. The enzyme had a molecular weight of about 34,000. The optimum pH was at 9 — 10.5 and the isoelectric point was at pH 5.1. l-Fucose and l-galactose were effective substrates for the enzyme reaction, but d-arabinose was not so much. The anomeric requirement of the enzyme to l-fucose was the β-pyranose form, and the reaction product from l-fucose was l-fucono- lactone. The hydrogen acceptor for the enzyme reaction wasNADP+, and NAD + could be substituted for it to a very small degree. Km values were 1.9mm, 19mm, 0.016mm, and 5.6mm for l-fucose, l- galactose, NADP+, and NAD+, respectively. The enzyme activity was strongly inhibited by Hg2 +, Cd2 +, and PCMB, but metal-chelating reagents had almost no effect. In a preliminary experiment, it was indicated that the enzyme may be usable for the measurement of l-fucose.  相似文献   

17.
Two coryneform bacteria, Arthrobacter globiformis IFO 12137 (ATCC 8010) and Brevibacterium helvolum IFO 12073, which have the arginine oxygenase pathway, could utilize L-ornithine, L-citrulline, and D-arginine. The cells of the bacteria grown on these amino acids contained high levels of guanidinobutyrase and induced levels of the enzymes of the preceding steps of the pathway. 4-Guanidinobutyrate induced guanidinobutyrase but failed to induce the other enzymes, indicating that it was the direct inducer of guanidinobutyrase. These amino acids and L-arginine also induced L-arginine: 2-ketoglutarate aminotransferase. 4-Aminobutyrate was formed on incubation of L-citrulline with L-citrulline-grown cells of A. globiformis in the presence of gabaculine; its amount was about 50% of the L-citrulline degraded. The L-arginine-grown cells produced 4-aminobutyrate and urea from L-arginine in the presence of aminooxyacetate or gabaculine; the amount of 4-aminobutyratewas 80% or more of that of the L-arginine degraded. When the oxygenase pathway was blocked with thioglycolate, the degradation of L-arginine and the formation of urea and 4-aminobutyrate were greatly suppressed. These results indicate that these amino acids are degraded via the arginine oxygenase and the arginine aminotransferase pathways and the major route is the former. Agmatine was degraded in these bacteria and induced agmatine deiminase, carbamoylputrescine hydrolase, putrescine oxidase, and aminobutyraldehyde dehydrogenase. None of the enzymes was induced by L-arginine.  相似文献   

18.
Pyrrolothiazolate formed by the Maillard reaction between l-cysteine and d-glucose has a pyrrolothiazole skeleton as a chromophore. We searched for a Maillard pigment having a pyrrolooxazole skeleton formed from l-threonine or l-serine instead of l-cysteine in the presence of d-glucose. As a result, two novel yellow pigments, named pyrrolooxazolates A and B, were isolated from model solutions of the Maillard reaction containing l-threonine and d-glucose, and l-serine and d-glucose, respectively, and identified as (2R,3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-2,5,7a-trimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid and (3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-5,7a-dimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid by instrumental analyses. These compounds were pyrrolooxazole derivatives carrying a carboxy group, and showed the absorption maxima at 300–360 nm under acidic and neutral conditions and at 320–390 nm under alkaline conditions.  相似文献   

19.
The 7-keto-8-aminopelargonic acid (KAPA) synthetase activities of cell-free extracts from various bacteria were investigated. The experiments on the substrate specificity of KAPA synthetase, using crude cell-free extracts from bacteria having high enzyme activity, showed that l-serine and pyruvic acid could replace l-alanine, but that, when the enzyme was partially purified, these compounds were not effective. Many kinds of amino acids such as l-cysteine, l-serine, d-alanine, glycine, d-histidine, and l-histidine, inhibited the enzyme activity. This inhibition was found to be competitive with l-alanine. Pyridoxal 5′-phosphate, which is a cofactor of the enzyme, also inhibited the enzyme activity at high concentrations. The repression of KAPA synthetase by biotin occurred in Bacillus subtilis and B. sphaericus but not in Micrococcus roseus and Pseudomonas fluorescens, even at a concentration of 1000 mµg per ml of biotin.  相似文献   

20.
The mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 was examined by investigating the properties of the enzymes involved in the hydrolysis of dl-5-substituted hydantoins. The enzymatic production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 involved the following two successive reactions; the d-isomer specific hydrolysis, i.e., the ring opening of d-5-substituted hydantoins to d-form N-carbamyl amino acids by an enzyme, d-hydantoin hydrolase (d-HYD hydrolase), followed by the d-isomer specific hydrolysis, i.e., the cleavage of N-carbamyl-d-amino acids to d-amino acids by an enzyme, N-carbamyl-d-amino acid hydrolase (d-NCA hydrolase).

l-5-Substituted hydantoins not hydrolyzed by d-HYD hydrolase were converted to d-form 5- substituted hydantoins through spontaneous racemization under the enzymatic reaction conditions.

It was proposed that almost all of the dl-5-substituted hydantoins were stoichiometrically and directly converted to the corresponding d-amino acids through the successive reactions of d-HYD hydrolase and d-NCA hydrolase in parrallel with the spontaneous racemization of l-5-substituted hydantoins to those of dl-form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号