首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 50 S ribosomal subunits from Escherichia coli were modified by reaction with 2-iminothiolane under conditions in which 65 sulfhydryl groups, about 2/protein, were added per subunit. Earlier work showed that protein L7/L12 was modified more extensively than the average but that nearly all 50 S proteins contained sulfhydryl groups. Mild oxidation led to the formation of disulfide protein-protein cross-links. These were fractionated by urea gel electrophoresis and then analyzed by diagonal gel electrophoresis. Cross-linked complexes containing two, three, and possibly four copies of L7/L12 were evident. Cross-links between L7/L12 and other ribosomal proteins were also formed. These proteins were identified as L5, L6, L10, L11, and, in lower yield, L9, L14, and L17. The yields of cross-links to L5, L6, L10, and L11 were comparable to the most abundant cross-links formed. Similar experiments were performed with 70 S ribosomes. Protein L7/L12 in 70 S ribosomes was cross-linked to proteins L6, L10, and L11. The strong L7/L12-L5 cross-link found in 50 S subunits was absent in 70 S ribosomes. No cross-links between 30 S proteins and L7/L12 were observed.  相似文献   

2.
Many studies have suggested that the 11S/7S ratio in soybeans affects the coagulation reaction at the first step. In this study, the 11S/7S ratio in soybeans showed significantly negative correlation with MgCl(2) concentrations for the maximum breaking stress of tofu for six Japanese varieties. To determine the effect of the 11S/7S ratio, soymilk was fractionated by centrifugation after the addition of MgCl(2), and the distribution of lipids and proteins was studied. The amount of precipitate increased as the MgCl(2) concentration or the 11S/7S ratio increased. More triglyceride was incorporated into the precipitate as the MgCl(2) concentration or the 11S/7S ratio increased. The stain intensity of bands after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that the ratio of oleosin, a membrane protein of the oil body, increased in the precipitate as the MgCl(2) concentration or the 11S/7S ratio increased, while the ratios of glycinin and beta-conglycinin were less variable. These results indicate that the 11S/7S ratio and coagulant concentration may have an effect on the amount of coagulum and the concentration of oil globules in the coagulum at the beginning of coagulation.  相似文献   

3.
The purified 30 S ribosomal proteins from Escherichia coli strain Q13 were chemically modified by reaction with ethyleneimine, specifically converting cysteine residues to S-2-aminoethylcysteine residues. Proteins S1, S2, S4, S8, S11, S12, S13, S14, S17, S18 and S21 were found to contain aminoethylcysteine residues after modification, whereas proteins S3, S5, S6, S7, S9, S10, S15, S16, S19 and S20 did not. Aminoethylated proteins S4, S13, S17 and S18 were active in the reconstitution of 30 S ribosomes and did not have altered functional activities in poly(U)-dependent polyphenylalanine synthesis, R17-dependent protein synthesis, fMet-tRNA binding and Phe-tRNA binding. Aminoethylated proteins S2, S11, S12, S14 and S21 were not active in the reconstitution of complete 30 S ribosomes, either because the aminoethylated protein did not bind stably to the ribosome (S2, S11, S12 and S21) or because the aminoethylated protein did not stabilize the binding of other ribosomal proteins (S14). The functional activities of 30 S ribosomes reconstituted from a mixture of proteins containing one sensitive aminoethylated protein (S2, S11, S12, S14 or S21) were similar to ribosomes reconstituted from mixtures lacking that protein. These results imply that the sulfhydryl groups of the proteins S4, S13, S17 and S18 are not necessary for the structural or functional activities of these proteins, and that aminoethylation of the sulfhydryl groups of S2, S11, S12, S14 and S21 forms either a kinetic or thermodynamic barrier to the assembly of active 30 S ribosomes in vitro.  相似文献   

4.
Transglutaminase catalyzes the formation of intermolecular and intramolecular ε-(γ-glutamyl)lysyl crosslinks in proteins. The study here examined the substrate effectiveness of soybean 7S and 11S proteins in the intermolecular-crosslinking reaction catalyzed by guinea pig liver transglutaminase.

Both 7S and 11S proteins could act as the substrate for the transglutaminase reaction. The reaction with 11S protein was faster than that of 7S protein. Analyses of the reaction products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that three main subunit groups of 7S protein and two acidic subunit groups of 11S protein were polymerized through the formation of intermolecular crosslinks by transglutaminase. Interestingly enough, no intermolecular crosslink was formed between the basic subunits of 11S protein. The possible significance of the intermolecular crosslinking catalyzed by transglutaminase is discussed, including the use of this enzyme reaction to improve the properties of food protein.  相似文献   

5.
Many studies have suggested that the 11S/7S ratio in soybeans affects the coagulation reaction at the first step. In this study, the 11S/7S ratio in soybeans showed significantly negative correlation with MgCl2 concentrations for the maximum breaking stress of tofu for six Japanese varieties. To determine the effect of the 11S/7S ratio, soymilk was fractionated by centrifugation after the addition of MgCl2, and the distribution of lipids and proteins was studied. The amount of precipitate increased as the MgCl2 concentration or the 11S/7S ratio increased. More triglyceride was incorporated into the precipitate as the MgCl2 concentration or the 11S/7S ratio increased. The stain intensity of bands after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE) indicated that the ratio of oleosin, a membrane protein of the oil body, increased in the precipitate as the MgCl2 concentration or the 11S/7S ratio increased, while the ratios of glycinin and β-conglycinin were less variable. These results indicate that the 11S/7S ratio and coagulant concentration may have an effect on the amount of coagulum and the concentration of oil globules in the coagulum at the beginning of coagulation.  相似文献   

6.
Food Processing Characteristics of Soybean 11S and 7S Proteins   总被引:1,自引:0,他引:1  
This paper deals with the contribution of protein components in soybean seeds to the physical properties of tofu-gel. Results obtained in tofu-making, using crude 11S and 7S components from defatted soybean meal, indicated that there presented significant difference between tofu-gels from crude 11S and 7S, namely, the tofu-gel from crude 11S was remarkably harder than that from crude 7S. And it has been recognized that the proportion of 11S to 7S in total protein of soybean seeds considerably differed among varieties and that the difference of the proportion might be related to the physical properties of tofu-gel prepared.  相似文献   

7.
Penicillin-binding site on the Escherichia coli cell envelope.   总被引:1,自引:0,他引:1       下载免费PDF全文
The binding of 35S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the "cell envelope" obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. At low pH, PBPs 1b, 1c, 2, and 3 demonstrated the greatest amount of binding. At high pH, these PBPs bound the least amount of penicillin. PBPs 1a and 5/6 exhibited the greatest amount of binding at pH 10 and the least amount at pH 4. With the exception of PBP 5/6, the effect of pH on the binding of penicillin was direct. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin. These observations suggest that a molecule of penicillin forms simultaneous bonds between its S at position 1 and sulfhydryl groups of PBP 5 and between its C-7 and free epsilon amino groups of PBP 5.  相似文献   

8.
You HJ  Lee KJ  Jeong HG 《FEBS letters》2002,517(1-3):175-179
Incorporation of inter- or intramolecular covalent cross-links into food proteins with microbial transglutaminase (MTG) improves the physical and textural properties of many food proteins, such as tofu, boiled fish paste, and sausage. By using nuclear magnetic resonance, we have shown that the residues exhibiting relatively high flexibility in MTG are localized in the N-terminal region; however, the N-terminal region influences the microenvironment of the active site. These results suggest that the N-terminal region is not of primary importance for the global fold, but influences the substrate binding. Therefore, in order to increase the transglutaminase activity, the N-terminal residues were chosen as candidates for site-directed replacement and deletion. We obtained several mutants with higher activity, del1-2, del1-3, and S2R. We propose a strategy for enzyme engineering targeted toward flexible regions involved in the enzymatic activity. In addition, we also briefly describe how the number of glutamine residues in a substrate protein can be increased by mixing more than two kinds of TGases with different substrate specificities.  相似文献   

9.
The distribution of ribosomal proteins in monosomes, polysomes, the postribosomal cytosol, and the nucleus was determined during steady-state growth in vegetative amoebae. A partitioning of previously reported cell-specific ribosomal proteins between monosomes and polysomes was observed. L18, one of the two unique proteins in amoeba ribosomes, was distributed equally among monosomes and polysomes. However S5, the other unique protein, was abundant in monosomes but barely visible in polysomes. Of the developmentally regulated proteins, D and S6 were detectable only in polysomes and S14 was more abundant in monosomes. The cytosol revealed no ribosomal proteins. On staining of the nuclear proteins with Coomassie blue, about 18, 7 from 40S subunit and 11 from 60S subunit, were identified as ribosomal proteins. By in vivo labeling of the proteins with [35S]methionine, 24 of the 34 small subunit proteins and 33 of the 42 large subunit proteins were localized in the nucleus. For the majority of the ribosomal proteins, the apparent relative stoichiometry was similar in nuclear preribosomal particles and in cytoplasmic ribosomes. However, in preribosomal particles the relative amount of four proteins (S11, S30, L7, and L10) was two- to four-fold higher and of eight proteins (S14, S15, S20, S34, L12, L27, L34, and L42) was two-to four-fold lower than that of cytoplasmic ribosomes.  相似文献   

10.
The flavin-dependent sulfhydryl oxidase from chicken egg white catalyzes the oxidation of sulfhydryl groups to disulfides with the reduction of oxygen to hydrogen peroxide. Reduced proteins are the preferred thiol substrates of this secreted enzyme. The egg white oxidase shows an average 64% identity (from randomly distributed peptides comprising more than 30% of the protein sequence) to a human protein, Quiescin Q6, involved in growth regulation. Q6 is strongly expressed when fibroblasts enter reversible quiescence (Coppock, D. L., Cina-Poppe, D., Gilleran, S. (1998) Genomics 54, 460-468). A peptide antibody against Q6 cross-reacts with both the egg white enzyme and a flavin-linked sulfhydryl oxidase isolated from bovine semen. Sequence analyses show that the egg white oxidase joins human Q6, bone-derived growth factor, GEC-3 from guinea pig, and homologs found in a range of multicellular organisms as a member of a new protein family. These proteins are formed from the fusion of thioredoxin and ERV motifs. In contrast, the flavin-linked sulfhydryl oxidase from Aspergillus niger is related to the pyridine nucleotide-dependent disulfide oxidoreductases, and shows no detectable sequence similarity to this newly recognized protein family.  相似文献   

11.
Flow dialysis measurements of calcium binding to bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) proteins in 20 mM Tris-HCl buffer at pH 7.5 and 8.3 revealed that S100 proteins bind specifically 4 Ca2+ eq/mol of protein dimer. The specific calcium-binding sites had, therefore, been assigned to typical amino acid sequences on the alpha and beta subunit. The protein affinity for calcium is much lower in the presence of magnesium and potassium. Potassium strongly antagonizes calcium binding on two calcium-binding sites responsible for most of the Ca2+-induced conformational changes on S100 proteins (probably site II alpha and site II beta). Zinc-binding studies in the absence of divalent cations revealed eight zinc-binding sites/mol of S100b protein dimer that we assumed to correspond to 4 zinc-binding sites/beta subunit. Zinc binding to S100b studied with UV spectroscopy methods showed that the occupation of the four higher affinity sites and the four lower affinity sites on the protein dimer were responsible for different conformational changes in S100b structure. Zinc binding on the higher affinity sites regulates calcium binding to S100b by increasing the protein affinity for calcium and decreasing the antagonistic effect of potassium on calcium binding. Zinc-binding studies on S100a and S100 alpha alpha protein showed that the Trp-containing S100 proteins bind zinc more weakly than S100b protein. Calcium-binding studies on zinc-bound S100a proved that calcium- and zinc-binding sites were distinct although there was no increase in zinc-bound S100a affinity for calcium, as in S100b protein. Finally we provide evidence that discrepancies between previously published results on the optical properties of S100b protein probably result from oxidation of the sulfhydryl groups in the protein.  相似文献   

12.
Human tonsillar 80-S ribosomes were 17% and 43% inactivated by 1 mM N-ethylmaleimide after 12 min at 30 or 37 degrees C, respectively. The ribosomes were unaffected by the reagent during the same period of time at 0 or 20 degrees C. 4, 12, 27 and 59 sulfhydryl groups per 80-S ribosomes were found labeled by 1 mM N-ethyl[14C] maleimide after 12 min at 0, 20, 30 or 37 degrees C, respectively. The analysis of radioactively labeled proteins by two-dimensional gel electrophoresis revealed the following: after 3 min at 37 degrees C only two 40-S proteins, S3 and S7, displayed a significant amount of label. After 12 min at 37 degrees C, there was a several-fold increase in the extent of radioactivity found in each of these proteins and, additionally, S1, S2, S4, S5, S15, S22 and S31 were also found among labeled 40-S proteins. S3 appeared to be the most N-ethylmaleimide-reactive 40S protein. After 3 min at 37 degrees C, L10, L17, L20 (and/or S20), L26, L32 and L33, and after 12 min at 37 degrees C, additionally L1, L2, L7, L9, L11, L15, L16, L18, and L25 were labeled among 60-S proteins. l17 and 32 were the most N-ethylmaleimide-reactive proteins under these conditions. After 12 min at 37 degrees C, approx. 26% and 39% of the radioactivity incorporated into the 80 S or 60 S ribosomal protein, respectively, was found in these two proteins. After 12 min at 0 degrees C, S3, L17, L32 and L33 were the only labeled proteins.  相似文献   

13.
The influence of streptomycin and neomycin upon the conformation of the ribosome has been investigated using spin-labeled and fluorescent analogs of the sulfhydryl reagent, N-ethylmaleimide. Changes in the electron paramagnetic resonance spectra or in the polarization of fluorescence of labeled ribosomes reveal that streptomycin alters the mobility of labels bound to the sulfhydryl group of protein S18 while neomycin affects the mobility of labels bound to the sulfhydryl groups of proteins S1, S21 and/or L10. It is also observed that both streptomycin and neomycin interfere with changes in the mobility of labels induced by storage under inactivating conditions. From these results, it is concluded that: 1. streptomycin and neomycin distort the conformation of the ribosome at different sites, streptomycin disturbing preferentially the area around the sulfhydryl group of protein S18 while neomycin affects the environment of the sulfhydryl groups of proteins S1, S21 and/or L10; 2. streptomycin and neomycin interefere with the ability of the ribosome to undergo conformational changes.  相似文献   

14.
Human erythrocyte membranes were enriched or depleted of cholesterol and effects on membrane proteins assessed with a membrane-impermeant sulfhydryl reagent, [35S]glutathione-maleimide. Reaction of the probe with intact cells quantifies exofacial sulfhydryl groups and reaction with leaky ghost membranes permits quantification of endofacial sulfhydryl groups. The mean endofacial sulfhydryl titer of cholesterol-enriched membranes exceeded that of cholesterol-depleted membrane by approximately 45 nmol/mg of protein or 64%. The corresponding exofacial titer of cholesterol-enriched cells was less than that of cholesterol-depleted cells by approximately 0.4 nmol/mg of protein, or 14%. Labeled membranes were examined by autoradiography of sodium dodecyl sulfate-polyacrylamide gel electropherograms to determine the labeling patterns of individual protein bands. Cholesterol enrichment enhanced the surface labeling of Coomassie brilliant blue stained bands 1,2,3, and 5, decreased the labeling of band 6, and did not change significantly that of band 4. The results demonstrate that changes in membrane cholesterol which influence lipid fluidity can alter the surface labeling of both intrinsic and extrinsic membrane proteins.  相似文献   

15.
Ribosome 70S tight couples and 30S subunits derived from them were modified with 2-iminothiolane under conditions where about two sulfhydryl groups per protein were added to the ribosomal particles. The 70S and 30S particles were not treated with elevated concentrations of NH4Cl, in contrast to those used in earlier studies. The modified particles were oxidized to promote disulfide bond formation. Proteins were extracted from the cross-linked particles by using conditions to preclude disulfide interchange. Disulfide-linked protein complexes were fractionated on the basis of charge by electrophoresis in polyacrylamide/urea gels at pH 5.5. The proteins from sequential slices of the urea gels were analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Final identification of proteins in cross-linked complexes was made by radioiodination of the proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis. Attention was focused on cross-links between 30S proteins. We report the identification of 27 cross-linked dimers and 2 trimers of 30S proteins, all but one of which were found in both 70S ribosomes and free 30S subunits in similar yield. Seven of the cross-links, S3-S13, S13-S21, S14-S19, S7-S12, S9-S13, S11-S21, and S6-S18-S21, have not been reported previously when 2-iminothiolane was used. Cross-links S3-S13, S13-S21, S7-S12, S11-S21, and S6-S18-S21 are reported for the first time. The identification of the seven new cross-links is illustrated and discussed in detail. Ten of the dimers reported in the earlier studies of Sommer & Traut (1976) [Sommer, A., & Traut, R. R. (1976) J. Mol. Biol. 106, 995-1015], using 30S subunits treated with high salt concentrations, were not found in the experiments reported here.  相似文献   

16.
We have examined the effect of a mercurial sulfhydryl reagent, mersalyl, on the protein composition of cytoskeletons by SDS-polyacrylamide gel electrophoresis after treatment of human platelets with Triton X-100 (Triton) containing mersalyl and Ca2+, and have found that mersalyl alters the protein composition of cytoskeletons in a Ca2+-dependent manner. At 1 X 10(-7) M Ca2+, 0.2 mM mersalyl, which represents approximately the equivalent amount of sulfhydryl of platelet suspensions that we used, specifically made myosin insoluble. The amount of myosin in Triton-mersalyl residues was increased by increasing the Ca2+ concentration of Triton lysis buffer. Actin-binding protein, 235 kDa polypeptide and alpha-actinin-like protein were decreased in Triton residues by mersalyl at Ca2+ concentrations less than 1 X 10(-7) M, while these polypeptides in Triton residues were increased by mersalyl in the presence of more than 2 X 10(-7) M Ca2+. Electron microscopic study revealed the presence of thick filaments with an appearance similar to that of the thick filaments of platelet myosin. Thus, the modification with mersalyl of sulfhydryls of platelet polypeptides along with changes in Ca2+ concentrations within a physiological range leads to changes in solubility of, and filament formation of, myosin, actin and other cytoskeletal proteins.  相似文献   

17.
Myosin was prepared from smooth muscle of horse esophagus in good yield (about 150 mg/100 g tissue) and was designated myosin S. Its properties were compared with those of myosin A from skeletal muscle.

The ratio of the absorption of myosin S at 280 nm to that at 260 nm was about 1.8, and the amount of contaminating phosphorus was only 0.91 g/105 g of myosin S, indicating that the latter is free of nucleic acid. The purity of this protein was examined by ultracentrifugation, gel filtration in the presence of 0.5 M KCl and 6 M urea and chromatography on DEAE-cellulose columns. These experiments all indicated that myosin S was homogeneous, like highly purified rabbit skeletal myosin A.

Amino acid analyses showed differences in the composition of smooth and skeletal myosins. Myosin S contained the same amount of sulfhydryl groups per 105 g of protein as horse and rabbit skeletal myosin A (about 8 moles/105 g of protein). But it contained more asparatic acid or asparagine, more leucine and less lysine, glycine and proline.

Ca2+-ATPase of myosin S in the presence of 0.5 M KCl and Mg2+-ATPase in the presence of 0.05 M KCl at 37° were very similar to those of skeletal myosin A. On the other hand, EDTA-ATPase and Ca2+-ATPase in the presence of 0.05 M KCl were much lower than those of skeletal myosin A. Lowering the temperature from 37 to 25°, the degree of decrease of the ATPase activities was much larger in myosin S than in skeletal myosin A. The reaction of N-ethylmaleimide with myosin S caused inhibition of the EDTA-ATPase but did not affect the Ca2+-ATPase activity. This behaviour was different from that of skeletal myosin A which exhibited an inhibition of EDTA-ATPase and an activation of Ca2+-ATPase during the course of the reaction of sulfhydryl groups of myosin with N-ethylmaleimide. These facts suggest that the structure of the active site of myosin S ATPase differs significantly from that of skeletal myosin A. These differences appear to influence the interaction of myosin with F-actin, so that the rate of superprecipitation found in an actomyosin reconstituted from myosin S and F-actin was only one fortieth of that found with skeletal myosin A.  相似文献   


18.
W Y Chooi 《Biochemistry》1980,19(15):3469-3476
The proteins of Drosophila melanogaster embryonic ribosomes were separated into seven groups (A80 through G80) by stepwise elution from carboxymethylcellulose with lithium chloride at pH 6.5 by procedures previously described [Chooi, W. Y., Sabatini, L. M., MacKlin, M. D., & Fraser, W. (1980) Biochemistry 19, 1425-1433]. Three relatively acidic proteins, S14, S25/S27, and 7/8, have now been isolated from group A80 by ion-exchange chromatog raphy on carboxymethylcellulose eluted with a linear gradient of lithium chloride at pH 4.2. Fractions containing the relatively basic proteins (groups B80 through G80) were furher combined into a total of 24 "pools". The criterion for combination was the migration patterns in one-dimensional polyacrylamide gels containing sodium dodecyl sulfate (NaDodS04) of every fifth fraction from the carboxymethylcellulose column. Each pool contained between 1 and 12 major proteins. Proteins S8, S13, S16, S19, S20/L24, S22/L26, S24, S26, S29, L4, L10/L11, L12, L13, L16, L18, L19, L27, 1, 9, and 11 have now been isolated from selected pools by gel filtration through Sephadix G-100. The amount of each protein recovered from a starting amount of 1.8 g of total 80S proteins varied form 0.2 to 10.8 mg. Five proteins had no detectable contamination, and in each of the others the impurities were no greater than 9%. The amino acid composition of the individual purified proteins was determined. The molecular weights of the proteins were estimated by polyacrylamide gel electrophoresis in NaDodSO4.  相似文献   

19.
Capacitation, the series of transformations that spermatozoa undergo to become fertile, is regulated by reactive oxygen species (ROS) and associated with an increase in the sulfhydryl content of Triton-soluble proteins. Our aims were to determine the fate of sulfhydryl groups in Triton-soluble proteins from capacitating human spermatozoa using two-dimensional (2D) gel electrophoresis, to evaluate the role of ROS in the changes observed, and to correlate the time course of the changes with that of the sperm generation of O(2)(*)(-). Triton-soluble proteins of control and capacitating human spermatozoa were labeled with 3-(N-maleimidylpropionyl) biocytin, separated by 2D gel electrophoresis, and probed with horseradish peroxidase-conjugated streptavidin. The sulfhydryl content of 10 out of the 14 proteins studied (pI: 4-7) was modified by the induction of capacitation, and the increases (by 200-400%, five proteins) and decreases (by 45-95%, five proteins) were prevented by superoxide dismutase and/or catalase. The alterations in protein sulfhydryl content occurred within 5-15 min but were reversed within 30-120 min. Three capacitation inducers triggered similar modifications. Therefore, human sperm capacitation is associated with rapid and reversible changes in protein sulfhydryl groups that appear to be redox regulated. The number of proteins affected, the types, and the kinetics of changes emphasize the complexity of sperm capacitation.  相似文献   

20.
Glycinin (11S) and beta-conglycinin (7S) are major storage proteins in soybean (Glycine max L.) seeds and accumulate in the protein storage vacuole (PSV). These proteins are synthesized in the endoplasmic reticulum (ER) and transported to the PSV by vesicles. Electron microscopic analysis of developing soybean cotyledons of the wild type and mutants with storage protein composition different from that of the wild type showed that there are two transport pathways: one is via the Golgi and the other bypasses it. Golgi-derived vesicles were observed in all lines used in this study and formed smooth dense bodies with a diameter of 0.5 to several micrometers. ER-derived protein bodies (PBs) with a diameter of 0.3-0.5 microm were observed at high frequency in the mutants containing higher amount of 11S group I subunit than the wild type, whereas they were hardly observed in the mutants lacking 11S group I subunit. These indicate that pro11S group I may affect the formation of PBs. Thus, the composition of newly synthesized proteins in the ER is important in the selection of the transport pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号