首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient method for the stereoselective synthesis of 2-amino-2-deoxy-d-arabinose and 2-deoxy-d-ribose is described.

The key step in this method was accomplished by the nucleophilic addition of methyl isocyanoacetate to 2,3-O-isopropylidene-d-glyceraldehyde with high erythro-selectivity (nearly 100%).

Subsequent intermolecular cyclization predominantly gave the desired oxazoline derivative (trans-form), in which two new chiral centers were formed. The oxazoline derivative was efficiently converted to both 2-amino-2-deoxy-d-arabinose and 2-deoxy-d-ribose.  相似文献   

2.
Mucopolysaccharides were isolated from both human and cow colostrums. Each of the fractionated mucopolysaccharides was considered to be homogeneous from behaviors in chromatography, electrophoresis and sedimentation pattern. The fractions isolated from human colostrum were found to contain 51.0~78.3% carbohydrates consisting of d-galactose, 2-amino-2-deoxy-d-glucose, N-acetylneuraminic acid, l-fucose and d-glucose, and 31.6~11.0% peptides consisting of 16 kinds of amino acids. The sedimentation constants, s20, w, of these fractions were in the range of 0.75 to 1.73 S. The fraction isolated from cow colostrum was found to contain 19.3% carbohydrates consisting of d-galactose, 2-amino-2-deoxy-d-glucose and N-acetylneuraminic acid, and 65.2% peptides or proteins consisting of 18 kinds of amino acids. The sedimentation constant, s20, w, of the fraction was 3.68 S.  相似文献   

3.
The antibiotic kanamycin was degraded with methanolic hydrogen chloride and was determined to be composed of three compounds: deoxystreptamine, 6-amino-6-deoxy-d-glucopyranose and 3-amino-3-deoxy-d-glucopyranose. From the chemical and physical data on the antibiotic and its fragments, kanamycin was shown to be O-α-6-amino-6-deoxy-d-glucopyranosyl-(1→4 or 6)-O-[α-3-amino-3-deoxy-d-glucopyranosyl-(1→6 or 4)]-1,3-diamino-1, 2, 3-trideoxy-myo-inositol.  相似文献   

4.
This paper deals with the partial correction of our previous paper and with some new results in regard to ammonolysis of the epoxide ring of 2,3-anhydroribofuranoside derivatives.

Treatment of methyl 2,3-anhydro-5-deoxy-α-d-ribofuranoside, prepared from d-xylose, with ammonia gave methyl 2-amino-2,5-dideoxy-α-d-arabinoside and no methyl 3-amino-3,5-dideoxy-α-d-xyloside which we reported to obtain previously.

The exclusive attack of the nucleophilic reagent at C-2 is inconsistent with a result of C. D. Anderson et al. in regard to ammonolysis of methyl 2,3-anhydro-α-d-ribofuranoside.

In contrast to α-anomer, methyl 2,3-anhydro-5-deoxy-β-d-ribofuranoside gave mainly methyl 3-amino-3,5-dideoxy-β-d-xyloside. The difference of ammonolysis products between α- and β-anomer will be due to existence of steric hindrance.  相似文献   

5.
The nature of the active site of Chaetomium trilaterale β-xylosidase catalyzing the hydrolysis of β-d-glucopyranoside and β-d-xylopyranoside was investigated by kinetic methods. On experiments with mixed substrates, such as phenyl β-d-xylopyranoside and phenyl β-d-glucopyranoside, the kinetic features agreed very closely with those features theoretically predicted for a single active site of the same enzyme catalyzing the hydrolysis of these two kinds of substrates.

Both the β-glucosidase and β-xylosidase activities were strongly inhibited by glucono-1,5-lactone and nojirimycin (5-amino-5-deoxy-d-glucopyranose). β-Xylosidase activity was inhibited non-competitively by the two inhibitors, but β-glucosidase activity was competitive. Methyl β-d-xylopyranoside, methyl β-d-glucopyranoside, 1-thiophenyl β-d-xylopyranoside, and 1-thiophenyl β-d-glucopyranoside poorly inhibited both activities. Methyl β-d-xylopyranoside inhibited the β-xylosidase activity competitively but the β-glucosidase activity was non-competitive, whereas methyl β-d-glucopyranoside inhibited the β-xylosidase activity non-competitively but the β-glucosidase activity was competitive. 1-Thiophenyl β-d-xylopyranoside and 1-thiophenyl β-d-glucopyranoside behaved as competitive inhibitors.

From these results, it was concluded that the β-xylosidase and β-glucosidase activities reside in one catalytic site, and this suggests that there might be two kinetically distinct binding sites in the active center of the same enzyme.  相似文献   

6.
Partial acid hydrolysis of asterosaponin A, a steroidal saponin, afforded two new disaccharides in addition to O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose which has been characterized in the preceding paper. The formers were demonstrated as O-(6-deoxy-α-d-galactopyranosyl)-(1→4)-6-deoxy-d-glucose and O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-6-deoxy-d-galactose, respectively.

Accordingly, the structure of carbohydrate moiety being composed of two moles each of 6-deoxy-d-galactose and 6-deoxy-d-glucose, was established as O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose, which is attached to the steroidal aglycone through an O-acetal glycosidic linkage.  相似文献   

7.
ABSTRACT

Maltose phosphorylase (MP), a glycoside hydrolase family 65 enzyme, reversibly phosphorolyzes maltose. In this study, we characterized Bacillus sp. AHU2001 MP (MalE) that was produced in Escherichia coli. The enzyme exhibited phosphorolytic activity to maltose, but not to other α-linked glucobioses and maltotriose. The optimum pH and temperature of MalE for maltose-phosphorolysis were 8.1 and 45°C, respectively. MalE was stable at a pH range of 4.5–10.4 and at ≤40°C. The phosphorolysis of maltose by MalE obeyed the sequential Bi–Bi mechanism. In reverse phosphorolysis, MalE utilized d-glucose, 1,5-anhydro-d-glucitol, methyl α-d-glucoside, 2-deoxy-d-glucose, d-mannose, d-glucosamine, N-acetyl-d-glucosamine, kojibiose, 3-deoxy-d-glucose, d-allose, 6-deoxy-d-glucose, d-xylose, d-lyxose, l-fucose, and l-sorbose as acceptors. The kcat(app)/Km(app) value for d-glucosamine and 6-deoxy-d-glucose was comparable to that for d-glucose, and that for other acceptors was 0.23–12% of that for d-glucose. MalE synthesized α-(1→3)-glucosides through reverse phosphorolysis with 2-deoxy-d-glucose and l-sorbose, and synthesized α-(1→4)-glucosides in the reaction with other tested acceptors.  相似文献   

8.
The structures of allosamidin (1) and methylallosamidin (2), novel insect chitinase inhibitors, were elucidated as 1 and 2 by acid hydrolysis experiments and analyses of 2d-NMR spectra. They are unique basic pseudotrisaccharides consisting of 2-acetamido-2-deoxy-d-allose (N-acetyl-d- allosamine) and a novel aminocyclitol derivative (3), termed allosamizoline.  相似文献   

9.
The transglucosylation reaction of buckwheat α-glucosidase was examined under the coexistence of 2-deoxy-d-glucose and maltose. As the transglucosylation products, two kinds of new disaccharide were chromatographically isolated in a crystalline form (hemihydrate). It was confirmed that these disaccharides were 3-O-α-d-glucopyranosyl-2-deoxy-d-glucose ([α]d + 132°, mp 130 ~ 132°C, mp of ±-heptaacetate 151 ~ 152°C) and 4-O-±-d-glucopyranosyl-2-deoxy-d-glucose ([±]d + 136°, mp 168 ~ 170°C), respectively. The principal product formed in the enzyme reaction was 3-O-±-d-glucopyranosyl-2-deoxy-d-glucose.  相似文献   

10.
New synthetic methods for the preparation of 6-deoxy-1,2-O-isopropylidene-α-d-xylo-hexofuranos-5-ulse (VIa) were described.

Methyl 2,3,4-tri-O-benzoyl-6-deoxy-α-d-arabino-hex-5-enopyranoside (IIIa) was synthesized starting from methyl α-d-altroside (IIa). This enose derivative (IIIa) was hydrolyzed to methyl 6-deoxy-α-d-arabino-hex-5-enopyranoside (IIIb), and then converted with acid into 6-deoxy-d-arabino-hexofuranos-5-ulose (I), the sugar component of antibiotic hygromycin A.  相似文献   

11.
Kinetics of the acyl transfer catalyzed by Xanthomonas α-amino acid ester hydrolase was studied. The enzyme hydrolyzed d-α-phenylglycine methyl ester (d-PG-OMe) to give equimolar amounts of d-α-phenylglycine and methanol. With d-PG-OMe as an acyl donor and 7-amino-3-deacetoxy-cephalosporanic acid (7-ADCA) as an acyl acceptor, the enzyme transferred the acyl group from d-PG-OMe to 7-ADCA in competition with water. The addition of amine nucleophiles (7-ADCA and 6-aminopenicillanic acid) decreased the molecular activity (ko) of the enzyme-catalyzed hydrolysis of d-PG-OMe, whereas it did not alter the Michaelis constant (KM), and plots of l/ko against the initial concentration of a nucleophile (no) gave a straight line. These results support the assumptions that the overall process for hydrolysis and acyl transfer proceeds through a common acyl-enzyme intermediate, that the acylation step of the enzyme is rate-limiting, and that the transfer competes with the hydrolysis of the acyl donor.  相似文献   

12.
From the methanolysis product of the antibiotic YA–56 X (Zorbamycin) and Y belonging to phleomycin-bleomycin group, two monosaccharides and one disaccharide were isolated as their fully acetylated derivatives. The structures of these compounds were determined to be methyl 2,3,4-tri-O-acetyl-6-deoxy-β-L-gulopyranoside, methyl 2,4,6-tri-O-acetyl-3-O-carbamoyl-α-D-mannopyranoside and methyl 2-O-(2,4,6-tri-O-acetyl-3-O-carbamoyl-α-D-mannopyranosyl)-3,4-O-0-acetyl-6-deoxy-β-L-“gulopyranoside,

Based on these results, it was concluded that 2-O-(3-O-carbamoyl-α-D-mannosyl)-6-deoxy-L-gulose is present as a sugar moiety of the antibiotic YA–56.  相似文献   

13.
Neutral sugar composition of cell walls of suspension-cultured tobacco cells was examined with the advance of culture age by an anion-exchange chromatography. Isolated cell walls gave on hydrolysis the following sugars: 2% of l-rhamnose, 6% of d-mannose, 26% of l-arabinose, 13% of d-galactose, 8% of d-xylose and 47% of d-glucose as neutral sugars. Little changes in composition of cell wall polysaccharides were recognized with the advance of culture age. Sugar composition of the extra-cellular polysaccharides was similar to that of hemicellulose fraction from cell walls. Pectinic acid gave on hydrolysis 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, d-galacturonic acid and its oligosaccharides.  相似文献   

14.
Radiolysis of some monosaccharides (fructose, glucose and ribose) in air-free condition was markedly enhanced by the addition of formate at concentrations above 20 mm, while it was inhibited at concentrations below 20 mm. The following compounds were detected in the irradiated sugar solutions containing excess formate (100mm): 1-Deoxy-d-arabinohexulose (1, G=4.4) and 1,3- dideoxy-d-erythrohexulose (2, G= 1.3) from fructose; 2-deoxy-d-ribose (3, G=2.3) and 2-deoxyribitol (4, G =0.6) from ribose; and 2-deoxy-d-glucose (5, G=0.5) and 2-deoxy-d-glucitol (6, G=0.4) from glucose. A mechanism for radiolytic formation of the products was proposed, based on interaction of - formed from formate with sugars.  相似文献   

15.
Deoxy derivatives of p-nitrophenyl (PNP) α-d-mannopyranoside, PNP 2-deoxy-α-d-arabino-hexopyranoside, 3-deoxy-α-d-arabino-hexopyranoside, 4-deoxy-α-d-lyxo-hexopyranoside, and α-d-rhamnopyranoside, were synthesized and hydrolytic activities of jack bean and almond α-mannosidases against them were investigated. These α-mannosidases scarcely acted on the 2-, 3-, and 4-deoxy derivatives, while the 6-deoxy one was hydrolyzed by the enzymes as fast as PNP α-d-mannopyranoside, which is a common substrate for α-mannosidase. These results indicate that the hydroxyl groups at C-2, 3, and 4 of the mannopyranoside are necessary to be recognized as a substrate by these enzymes, while that at C-6 does not have so a crucial role in substrate discrimination. Values of Km and Vmax of the enzymes on the hydrolysis of PNP α-d-rhamnopyranoside were obtained from kinetic studies.  相似文献   

16.
Acid hydrolysis of asterosaponin A afforded a crystalline 6-deoxyglucobiose, whose structure has been established as O-(6-deoxy-α-d-glucopyranosyl)-(1→4)-6-deoxy-d-glucose. This is the first isolation of a 6-deoxyglucobiose. Its formation as a hydrolytic fragment of asterosaponin A suggests the presence of an α-1→4′-glycosidic linkage between the two 6-deoxy-d-glucose units in the saponin.  相似文献   

17.
The condensation reaction of 3-acetamido-2,4,6-tri-O-benzyl-3-deoxy-α-d-glucopyranosyl chloride, 6-acetamido-2,3,4-tri-O-benzyl-6-deoxy-d-glucopyranosyl chloride and 2,3,4,6-tetra-O-benzyl-α-d-glucopyranosyl chloride were performed by a modified Königs-Knorr method. The rapid conversion of the benzyl halogeno derivative of 3-acetamido-3-deoxy-d-glucose to a stable intermediate caused a poor yield in the glucoside formation with complex aglycons at the presence of dioxane. For the benzyl halogeno derivative of 6-acetamido-6-deoxy-d-glucose, the C-6 acetamido group was favorable to the α-glucoside formation by its anchimeric assistance. A favorable effect of dioxane was observed for the α-glucoside formation of benzyl halogeno derivative of d-glucose.  相似文献   

18.
The structure of an acidic polysaccharide elaborated by Bacillus polymyxa S-4 was investigated in relation to its physiological activity, particularly, its hypocholesterolemic effect on experimental animals. The polysaccharide is composed of d-glucose, d-mannose, d-galactose, d-glucuronic acid, and d-mannuronic acid (molar ratio 3:3:1: 2:1). Methylation and fragmentation analyses, such as Smith degradation and partial acid hydrolysis showed that the polysaccharide has a complicated, highly branched structure, consisting mainly of (1 → 3)- and (1 → 4)-d-glycosidic linkages. The backbone chain containing d-glucuronic acid, d-mannose, and d-galactose residues is attached at the C-3, C-4, and C-4 positions, respectively, with side chains of single or a few carbohydrate units, which are terminated with d-glucose or d-mannose residues.  相似文献   

19.
The mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 was examined by investigating the properties of the enzymes involved in the hydrolysis of dl-5-substituted hydantoins. The enzymatic production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 involved the following two successive reactions; the d-isomer specific hydrolysis, i.e., the ring opening of d-5-substituted hydantoins to d-form N-carbamyl amino acids by an enzyme, d-hydantoin hydrolase (d-HYD hydrolase), followed by the d-isomer specific hydrolysis, i.e., the cleavage of N-carbamyl-d-amino acids to d-amino acids by an enzyme, N-carbamyl-d-amino acid hydrolase (d-NCA hydrolase).

l-5-Substituted hydantoins not hydrolyzed by d-HYD hydrolase were converted to d-form 5- substituted hydantoins through spontaneous racemization under the enzymatic reaction conditions.

It was proposed that almost all of the dl-5-substituted hydantoins were stoichiometrically and directly converted to the corresponding d-amino acids through the successive reactions of d-HYD hydrolase and d-NCA hydrolase in parrallel with the spontaneous racemization of l-5-substituted hydantoins to those of dl-form.  相似文献   

20.
Incorporation of the radioactive degradation products of kanamycin A or related metabolites into kanamycin A by growing cells of Streptomyces kanamyceticus was examined. 3H-Deoxystreptamine was incorporated into deoxystreptamine moiety of kanamycin, but neither 14C-3-amino-3-deoxy-d-glucose nor 14C-6-amino-6-deoxy-d-glucose was incorporated. 3H-Kanamycin A added to medium was modified and inactivated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号