首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Colistin, a fatty acyl peptide antibiotic, was attacked by proteolytic enzymes such as papain, ficin and bromelain, and as degradation product, a peptide portion retaining the ring structure of colistin was liberated. In contrast, an analogous antibiotic polymyxin B showed a characteristic resistance to the catalytic activity of papain.

Colistin nonapeptide and α-N-fatty acyl α,γ-diaminobutyric acid were obtained as products from the above enzymatic hydrolyzates of colistin and their chemical and physicochemical properties were investigated.

Contrary to colistin, this colistin nonapeptide was inactive to Escherichia coli. NIHJ and to many other strains even at a concentration of 800 mcg/ml by the agar dilution method. As α-N-fatty acyl α,γ-diaminobutyric acid which is rest part of colistin was added to colistin nonapeptide, antimicrobial activity of colistin nonapeptide did not increase.  相似文献   

2.
A series of six N-carbamimidoyl-4-(3-substituted phenylureido)benzenesulfonamide derivatives were synthesized by reaction of sulfaguanidine with aromatic isocyanates. In vitro and in silico inhibitory effects of the novel ureido-substituted sulfaguanidine derivatives were investigated by spectrophotometric methods for α-glycosidase (α-GLY), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes associated with diabetes mellitus (DM) and Alzheimer's disease (AD). N-Carbamimidoyl-4-{[(3,4-dichlorophenyl)carbamoyl]amino}benzene-1-sulfonamide ( 2f ) showed AChE and BChE inhibitory effects, with KI values of 515.98±45.03 nM and 598.47±59.18 nM, respectively, while N-carbamimidoyl-4-{[(3-chlorophenyl)carbamoyl]amino}benzene-1-sulfonamide ( 2e ) showed strong α-GLY inhibitory effect, with KI values of 103.94±13.06 nM. The antidiabetic effects of the novel synthesized compounds are higher than their anti-Alzheimer's effects, because the inhibition effect of the compounds on the α-GLY with diabetic enzyme is greater than the effect on esterase enzymes. Indeed, inhibition of the metabolic enzymes is important for the treatment of DM and AD.  相似文献   

3.
Abstract

A number of 2-substituted-5,6-dichloro-l-(α-L-arabinofuranosyl)benzimidazoles have been prepared by condensation of 2-bromo-5,6-dichlorobenzimidazole or 2,5,6-trichlorobenzimidazole with tetra-O-acetyl-L-arabinofuranose. 2-Alkylamino derivatives were prepared by a substitution of the 2-chloro group with the appropriate amines. All target compounds were evaluated for activity against HCMV and HSV-1. The 2-chloro and 2-bromo derivatives showed moderate activity against HCMV at non-cytotoxic concentrations.  相似文献   

4.
Russian Journal of Bioorganic Chemistry - A five-stage synthesis of azepanobetulin from betulin with a total yield of 47% has been carried out. The acylation of azepanobetulin with anhydrides or...  相似文献   

5.
Abstract

The novel hexadeoxyribonucleotides α-d(CpCpTpTpCpC) and α-d(CpApTpGpCpG), in which each glycosidic linkage exhibit the anomeric α-configuration, were synthesized by the phosphotriester method. 1H-NMR and thermal denaturation studies provided evidence for these a-oligonucleotides to exhibit a secondary structure similar to that of the natural nucleic acids.  相似文献   

6.
For use in a differential assay of human α-amylases, a variety of 65-S-substituted p-nitrophenyl α-maltopentaoside derivatives (6-54) were systematically synthesized via the key intermediate, p-nitrophenyl O-(2,3-di-O-acetyl-6-S-acetyl-4-O-benzoyl-6-thio-α-D-glucopyranosyl)-(1 →4)-tris[O-(2,3,6-tri-O-acetyl-α-D-glucopyranosyl)-(1→4)]-2,3,6-tri-O-acetyl-α-D-glucopyranoside (4), which was easily prepared from p-nitrophenyl α-maltopentaoside (G5P) in four steps. The sulfoxide and sulfone derivatives were prepared by oxidizing the corresponding sulfides with m-chloroperbenzoic acid.  相似文献   

7.
Abstract

A series of 5′-O-[[[[(alkyl)oxy]carbonyl] amino] sulfonyl] uridines have been synthesized by reaction of cyclohexanol, palmityl alcohol, 1,2-di-O-benzoylpropanetriol and 2,3,4,6-tetra-O-benzoyl-L-glucopyranose with chlorosulfonyl isocyanate and 2,3′-O-isopropylidene-uridine. Another series of 5′-O-(N-ethyl and N-isopropylsulfamoyl) uridines have been prepared by reaction of 2′,3′-O-isopropylidene and 2′,3′-di-O-acetyluridine with N-ethylsulfamoyl and N-isopropylsulfamoyl chlorides. All compounds were tested against HSV-2, VV, SV and ASFV viruses. 2′,3′-Di-O-acetyl-5′-O-(N-ethyl and N-isopropylsulfamoyl) uridine showed significant activities against HSV-2. 5′-O-[[[[(2,3,4,6-Tetra-O-benzoyl-β-L-glucopyranosyl)oxy]carbonyl]amino] sulfonyl]-2′,3′-O-isopropylideneuridine was very active against ASFV.  相似文献   

8.
Abstract

The preparation of the unnatural nucleoside α-guanosine (1) has been achieved from readily available, literature precursors in ca. 6–9% overall yield. The key step, construction of the α-anomeric bond between the purine and the sugar, was accomplished by SN2 displacement of protected β-chlororibose derivative 2 with 2-amino-6-chloropurine. The optimal conditions for this reaction involved cesium carbonate in N-methylpyrrolidinone (α/β ratio: 7.7:1).  相似文献   

9.
Various α-isocyanocycloalkylideneacetamides were synthesized by the reaction of isocyanoacetamides with ketones and following by dehydration. These compounds were examined for their inhibitory activity against the germination of rice, cucumber and radish seeds, and for their herbicidal effects on rice, tomato and weed seedlings. Among them, α-isocyanocyclohexylidene-acetylpiperidine showed selective herbicidal activity against the broad-leaf plants.  相似文献   

10.
11.
Abstract

The synthesis of several 5′-substituted derivatives of ribavirin (1) and tiazofurin (3) are described. Direct acylation of 1 with the appropriate acyl chloride in pyridine-DMF gave the corresponding 5′-O-acyl derivatives (4a-h). Tosylation of the 2′, 3′-O-isopropylidene-ribavirin (6) and tiazofurin (11) with p-toluenesulfonyl chloride gave the respective 5′-O-p-tolylsulfonyl derivatives (7a and 12a), which were converted to 5′-azido-5′-deoxy derivatives (7b and 12b) by reacting with sodium/lithium azide. Deisopropylidenation of 7b and 12b, followed by catalytic hydrogenation afforded 1-(5-amino-5-deoxy-β-D)-ribofuranosyl)-1, 2, 4-triazole-3-carboxamide (10b) and 2 - (5 -amino- 5-deoxy- β-D-ribofuranosyl) thiazole-4-carboxamide (16), respectively. Treatment of 6 with phthalimide in the presence of triphenylphosphine and diethyl azodicarboxylate furnished the corresponding 5′-deoxy-5′-phthaloylamino derivative (9). Reaction of 9 with n-butylamine and subsequent deisopropylidenation provided yet another route to 10b. Selective 5′-thioacetylation of 6 and 11 with thiolacetic acid, followed by saponification and deisopropylidenation afforded 5′-deoxy-5′-thio derivatives of 1-β-D-ribofuranosyl-1, 2, 4-triazole-3-carboxamide (8a) and 2-β-D-ribofuranosylthiazole-4-carboxamide (15), respectively.  相似文献   

12.
The novel RGDF mimetics were synthesized with the use of 4-(1,2,3,4-tetrahydroisoquinoline-7-yl)amino-4-oxobutyric or 5-(1,2,3,4-tetrahydroisoquinoline-7-yl)amino-5-oxopentanoic acids as a surrogate of Arg-Gly motif. The synthesized compounds have demonstrated a high potency to inhibit platelet aggregation in vitro and to block FITC-Fg binding to αIIbβ3 on washed human platelets.  相似文献   

13.
A series of novel substituted pyrazole-fused oleanolic acid derivative were synthesized and evaluated as selective α-glucosidase inhibitors. Among these analogs, compounds 4a – 4f exhibited more potent inhibitory activities compared with their methyl ester derivatives, and standard drugs acarbose and miglitol as well. Besides, all these analogs exhibited good selectivity towards α-glucosidase over α-amylase. Analog 4d showed potent inhibitory activity against α-glucosidase (IC50=2.64±0.13 μM), and greater selectivity towards α-glucosidase than α-amylase by ∼33-fold. Inhibition kinetics showed that compound 4d was a non-competitive α-glucosidase inhibitor, which was consistent with the result of its simulation molecular docking. Moreover, the in vitro cytotoxicity of compounds 4a – 4f towards hepatic LO2 and HepG2 cells was tested.  相似文献   

14.
An efficient method has been developed for the synthesis of novel α-aminophosphonates (AAP) ( 3 a – m ) through a one-pot three-component reaction of 1,3-disubstituted-1H-pyrazol-5-amine, aromatic aldehydes, and phosphite using lithium perchlorate as catalyst. All newly synthesized compounds were characterized via different spectroscopic techniques. The synthesized compounds′ mode of action was investigated using molecular docking against the outer membrane protein A (OMPA) and exo-1,3-β-glucanase, with interpreting their pharmacokinetics aspects. The results of the antimicrobial effectiveness of these compounds revealed a broad spectrum of their biocidal activity and this in-vitro study was in line with the in- silico results. Additionally, it has been demonstrated that these compounds exhibited a minimum inhibitory concentration (MIC) with significant activity at low concentrations (7.5–30.0 mg/mL). Further, the radical scavenging (DPPH*) activity of the synthesized compounds fluctuated, with compounds 3 h , 3 a , and 3 f showing the highest antioxidant activity. Overall, the formulated compounds can be employed as antimicrobial and antioxidant agents in medical applications.  相似文献   

15.
By complementation of an alpha-isopropylmalate synthase-negative mutant of Saccharomyces cerevisiae (leu4 leu5), a plasmid was isolated that carried a structural gene for alpha-isopropylmalate synthase. Restriction mapping and subcloning showed that sequences sufficient for complementation of the leu4 leu5 strain were located within a 2.2-kilobase SalI-PvuII segment. Southern transfer hybridization indicated that the cloned DNA was derived intact from the yeast genome. The cloned gene was identified as LEU4 by integrative transformation that caused gene disruption at the LEU4 locus. When this transformation was performed with a LEU4fbr LEU5 strain, the resulting transformants had lost the 5',5',5'-trifluoro-D,L-leucine resistance of the recipient strain but were still Leu+. When it was performed with a LEU4 leu5 recipient, the resulting transformants were Leu-. The alpha-isopropylmalate synthase of a transformant that carried the LEU4 gene on a multicopy plasmid (in a leu5 background) was characterized biochemically. The transformant contained about 20 times as much alpha-isopropylmalate synthase as wild type. The enzyme was sensitive to inhibition by leucine and coenzyme A, was inactivated by antibody generated against alpha-isopropylmalate synthase purified from wild type and was largely confined to the mitochondria. The subunit molecular weight was 65,000-67,000. Limited proteolysis generated two fragments with molecular weights of about 45,000 and 23,000. Northern transfer hybridization showed that the transformant produced large amounts of LEU4-specific RNA with a length of about 2.1 kilonucleotides. The properties of the plasmid-encoded enzyme resemble those of a previously characterized alpha-isopropylmalate synthase that is predominant in wild-type cells. The existence in yeast of a second alpha-isopropylmalate synthase activity that depends on the presence of an intact LEU5 gene is discussed.  相似文献   

16.
Abstract

β-D-pentofuranonucleoside derivatives of 2-azidoadenine and 6-azidopurines have been synthesized. The azido-tetrazolo tautomerism observed on such nucleoside analogues has been studied. The compounds were tested for their activity against HIV and HBV but they did not show significant antiviral effect.  相似文献   

17.
α-exo-Methylene-γ-butyrolactones and α-exo-methylene-δ-valerolactones constitute an important group of natural and bioactive products. A simple and general protocol of halolactonization of dienoic acids to obtain various α-exo-methylene-lactones in excellent yields is described. The resulting halogenated α-exo-methylene-lactones were found to exhibit potent cytotoxic activities.  相似文献   

18.
Genome sequence data were used to clone and express two sialyltransferase enzymes of the GT-42 family from Helicobacter acinonychis ATCC 51104, a gastric disease isolate from Cheetahs. The deposited genome sequence for these genes contains a large number of tandem repeat sequences in each of them: HAC1267 (RQKELE)(15) and HAC1268 (EEKLLEFKNI)(13). We obtained two clones with different numbers of repeat sequences for the HAC1267 gene homolog and a single clone for the HAC1268 gene homolog. Both genes could be expressed in Escherichia coli and sialyltransferase activity was measured using synthetic acceptor substrates containing a variety of terminal sugars. Both enzymes were shown to have a preference for N-acetyllactosamine, and they each made a product with a different linkage to the terminal galactose. HAC1267 is a mono-functional α2,3-sialyltransferase, whereas HAC1268 is a mono-functional α2,6-sialyltransferase and is the first member of GT-42 to show α2,6-sialyltransferase activity.  相似文献   

19.
Abstract

The 7-bromo- (4a) and 7-iodo- (4b) derivatives of 7-deaza-2′-deoxyxanthosine (5) are prepared. Furthermore, the building blocks 68 of 7-deaza-2′-deoxyxanthosine (5) are synthesized and tested for their usage in oligonucleotide synthesis.  相似文献   

20.
Mannose is an important sugar in the biology of the Gram-negative bacterium Porphyromonas gingivalis. It is a major component of the oligosaccharides attached to the Arg-gingipain cysteine proteases, the repeating units of an acidic lipopolysaccharide (A-LPS), and the core regions of both types of LPS produced by the organism (O-LPS and A-LPS) and a reported extracellular polysaccharide (EPS) isolated from spent culture medium. The organism occurs at inflamed sites in periodontal tissues, where it is exposed to host glycoproteins rich in mannose, which may be substrates for the acquisition of mannose by P. gingivalis. Five potential mannosidases were identified in the P. gingivalis W83 genome that may play a role in mannose acquisition. Four mannosidases were characterized in this study: PG0032 was a β-mannosidase, whereas PG0902 and PG1712 were capable of hydrolyzing p-nitrophenyl α-d-mannopyranoside. PG1711 and PG1712 were α-1→3 and α-1→2 mannosidases, respectively. No enzyme function could be assigned to PG0973. α-1→6 mannobiose was not hydrolyzed by P. gingivalis W50. EPS present in the culture supernatant was shown to be identical to yeast mannan and a component of the medium used for culturing P. gingivalis and was resistant to hydrolysis by mannosidases. Synthesis of O-LPS and A-LPS and glycosylation of the gingipains appeared to be unaffected in all mutants. Thus, α- and β-mannosidases of P. gingivalis are not involved in the harnessing of mannan/mannose from the growth medium for these biosynthetic processes. P. gingivalis grown in chemically defined medium devoid of carbohydrate showed reduced α-mannosidase activity (25%), suggesting these enzymes are environmentally regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号