首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
miRNA是近年来发现的一类长约22 nt的内源性非编码RNA,在动物中主要通过抑制靶mRNA翻译,在转录后水平调控基因表达。大量研究表明脂肪组织中的miRNAs参与了脂肪细胞分化、脂代谢等多种生物过程调控,其自身也受到转录因子、脂肪细胞因子和环境因子等调控,这些复杂的相互作用关系构成了脂肪组织中miRNA的调控网络,循环miRNA的发现为这个网络加入了新元素。对肥胖等代谢疾病的研究,应该从这个复杂的动态网络中寻找答案。文中综述了脂肪组织中miRNA的最新研究进展,以期为利用miRNA进行肥胖等相关代谢失调疾病的治疗提供新思路。  相似文献   

2.
3.
非编码RNA与肝脏糖脂代谢调控   总被引:1,自引:0,他引:1  
随着经济的迅速发展、人们饮食习惯的改变和身体活动的减少,糖尿病成为了现代社会的非传染性的流行病,给家庭和社会造成了极大的危害和经济负担。其中以全身性胰岛素抵抗及胰岛功能衰竭为主要发病特征的2型糖尿病(type 2 diabetes,T2D)已在世界范围引起广泛关注。T2D的发生发展涉及许多组织及糖代谢的各个环节,遗传因素和环境因素共同引起的糖脂代谢通路任一环节的失调均可导致T2D的发生。近年来,包括microRNA(miRNA)及长非编码RNA(LncRNA)在内的非编码RNA(ncRNA)的发现及其在人体生理和病理生理过程中的重要调控作用不断被揭示,为进一步了解T2D的发病机制注入了新理念和信息。miRNAs及LncRNAs的表达具有组织特异性,其表达水平的异常通常与疾病相关。本文主要对miRNAs和LncRNAs在肝脏糖脂代谢调控及T2D的发生发展中的作用及机制的最新研究进展作简要综述。  相似文献   

4.
5.
二氢叶酸还原酶结合底物的去除   总被引:1,自引:1,他引:0  
分析了应用氨甲蝶呤(MTX-Agarose)亲和层析法提纯的鸡肝二氢叶酸还原酶的组成和性质.建立了用平面粒度胶等电聚焦法去除与酶紧密结合底物的方法.讨论了结合底物对酶构象研究的影响,并指出,用未完全去除结合底物的酶研究酶在变性过程构象变化会得到错误的结论.  相似文献   

6.
硫氧还蛋白结合蛋白-2(thioredoxin binding protein-2,TBP-2)属于硫氧还蛋白结合蛋白家族成员,与还原型硫氧还蛋白结合,抑制其还原活性。在生物体内,TBP-2不但参与细胞内的氧化还原调节,还具有调节细胞生长繁殖和促进细胞凋亡的作用。TBP-2在葡萄糖和脂肪代谢中的作用被广泛研究。TBP-2高表达时,胰岛细胞凋亡,与糖尿病发生相关;而TBP-2缺失,与高脂血症发病有关。本文综述了TBP-2在糖脂代谢中的作用。  相似文献   

7.
8.
An organism producing extracellular polysaccharide was isolated from soil and identified as Aeromonas hydrophila (Chester) Stanier. The effects of medium components and cultural conditions on production of the polysaccharide were studied. The optimal concentrations of carbon and nitrogen sources were 5% and 0.3%, respectively, for production of the polysaccharide. The optimal initial pH was 7~9. The maximum polysaccharide yield was obtained at 4~8 days of fermentation. From sucrose and raffinose as carbon source, the organism produced levan and acidic polysac-charide in the ratio of 7:3 and 4:6, respectively. From glucose, galactose, fructose, mannose, maltose and lactose, mainly acidic polysaccharide was produced. The acidic polysaccharide was found to contain galactose, mannose and glucuronic acid in a ratio of 5:4:2. The acidic polysaccharides obtained from sucrose and lactose seemed to be the same polysaccharide.  相似文献   

9.
The liver plays a complex role in metabolism and detoxification, and better tools are needed to understand its function and to develop liver-targeted therapies. In this study, we establish a mechanobiological model of liver transport and hepatocyte biology to elucidate the metabolism of urea and albumin, the production/detoxification of ammonia, and consumption of oxygen and nutrients. Since hepatocellular shear stress (SS) can influence the enzymatic activities of liver, the effect of SS on the urea and albumin synthesis are empirically modeled through the mechanotransduction mechanisms. The results demonstrate that the rheology and dynamics of the sinusoid flow can significantly affect liver metabolism. We show that perfusate rheology and blood hematocrit can affect urea and albumin production by changing hepatocyte mechanosensitive metabolism. The model can also simulate enzymatic diseases of the liver such as hyperammonemia I, hyperammonemia II, hyperarginemia, citrollinemia, and argininosuccinicaciduria, which disrupt the urea metabolism and ammonia detoxification. The model is also able to predict how aggregate cultures of hepatocytes differ from single cell cultures. We conclude that in vitro perfusable devices for the study of liver metabolism or personalized medicine should be designed with similar morphology and fluid dynamics as patient liver tissue. This robust model can be adapted to any type of hepatocyte culture to determine how hepatocyte viability, functionality, and metabolism are influenced by liver pathologies and environmental conditions.  相似文献   

10.
Objective: Mitochondrial dysfunction might predispose individuals to develop insulin resistance. Our objective was to determine whether mitochondrial dysfunction or insulin resistance was the primary event during high‐fat (HF) diet. Research Methods and Procedures: Rats were fed an HF diet for 0, 3, 6, 9, 14, 20, or 40 days and compared with control. Soleus and tibialis muscle mitochondrial activity were assessed using permeabilized fiber technique. Insulin [area under the curve for insulin (AUCI)] and glucose [area under the curve for glucose (AUCG)] responses to intraperitoneal glucose tolerance test as well as fasting plasma non‐esterified fatty acids (NEFAs), triglyceride, and glycerol concentrations were determined. Results: AUCI and AUCG were altered from Day 6 (p < 0.01 vs. Day 0). In soleus, oxidative phosphorylation (OXPHOS) activity was transiently enhanced by 26% after 14 days of HF diet (p < 0.05 vs. Day 0) conjointly with 62% increase in NEFA concentration (p < 0.05 vs. Day 0). This was associated with normalized AUCG at Day 14 and with a decline of plasma NEFA concentration together with stabilization of intra‐abdominal adiposity at Day 20. Prolongation of HF diet again caused an increase in plasma NEFA concentration, intra‐abdominal adiposity, AUCI, and AUCG. At Day 40, significant decrease in OXPHOS activity was observed in soleus. Discussion: Mitochondria first adapt to overfeeding in oxidative muscle limiting excess fat deposition. This potentially contributes to maintain glucose homeostasis. Persistent overfeeding causes insulin resistance and results in a slow decline in oxidative muscle OXPHOS activity. This shows that the involvement of mitochondria in the predisposition to insulin resistance is mainly due to an inability to face prolonged excess fat delivery.  相似文献   

11.
SIK2在脂质和糖代谢及应激反应中的调节作用   总被引:1,自引:0,他引:1  
  相似文献   

12.
Twenty-one whitefly populations in the genus Bemisia were evaluated for genetic variation at 3 allozyme loci. Nine of the 22 populations that exhibited polymorphic loci were subjected to allozyme analysis using a minimum of 10 enzymes, representing 10 to 14 distinct loci. Among those nine variants examined, calculated genetic distances ranged between 0.03 and 0.52, with three main groups emerging from the analysis. One group comprised two closely related Western Hemisphere variants of B. tabaci: type A from California, United States and a geographically proximal population from Culiacan, Mexico. A second cluster contained five collections previously identified as B. tabaci type B and Bemisia argentifolii, while a third group contained a single population from Benin, Africa. The latter two groups were grouped separately from New World populations and are thought to have a recent origin in the Eastern Hemisphere.  相似文献   

13.
Meloidogyne incognita race 1, M. javanica, M. arenaria race 1, M. hapla, and an undescribed Meloidogyne sp. were analyzed by comparing isozyme phenotypes of esterase, malate dehydrogenase, phosphoglucomutase, isocitrate dehydrogenase, and α-glycerophosphate dehydrogenase. Isozyme phenotypes were obtained from single mature females by isoelectric focusing electrophoresis. Of these five isozymes, only esterase and phosphoglucomutase could be used to separate all five Meloidogyne spp.; however, the single esterase electromorphs were similar for M. incognita and M. hapla. Yet when both nematodes were run on the same gel, differences in their esterase phenotypes were detectable. Isozyme phenotypes from the other three isozymes revealed a great deal of similarity among M. incognita, M. javanica, M. arenaria, and the undescribed Meloidogyne sp.  相似文献   

14.
15.
Currently, little is known about the role of intracellular triacylglycerol (TAG) lipases in the brain. Adipose triglyceride lipase (ATGL) is encoded by the PNPLA2 gene and catalyzes the rate-limiting step of lipolysis. In this study, we investigated the effects of ATGL deficiency on brain lipid metabolism in vivo using an established knock-out mouse model (ATGL-ko). A moderate decrease in TAG hydrolase activity detected in ATGL-ko versus wild-type brain tissue was accompanied by a 14-fold increase in TAG levels and an altered composition of TAG-associated fatty acids in ATGL-ko brains. Oil Red O staining revealed a severe accumulation of neutral lipids associated to cerebrovascular cells and in distinct brain regions namely the ependymal cell layer and the choroid plexus along the ventricular system. In situ hybridization histochemistry identified ATGL mRNA expression in ependymal cells, the choroid plexus, pyramidal cells of the hippocampus, and the dentate gyrus. Our findings imply that ATGL is involved in brain fatty acid metabolism, particularly in regions mediating transport and exchange processes: the brain-CSF interface, the blood-CSF barrier, and the blood-brain barrier.  相似文献   

16.
In Wilson disease, mutations in the ATP7B-gene lead to hepatic accumulation of copper that becomes toxic when the hepatic binding capacity is exceeded, leading to oxidative stress and acute liver failure. Several proteins are probably involved in dealing with the excess copper and oxidative stress. As a first step towards biomarker discovery and analyzes of copper metabolism in Wilson disease patients we characterized copper-induced changes in protein expression in cell lysates and culture media from an in vitro copper-overload model using surface enhanced laser desorption/ionization (SELDI) proteomics technology. HepG2 cells were cultured for 48 h with a physiological (0.5 microM) or a pathological (100 microM) copper concentration. Samples were applied to weak cation exchange (WCX) proteinchip arrays and chips were analyzed by time of flight (TOF)-mass spectrometry. Copper-coated IMAC chips were used to detect copper-binding proteins in cell lysate of copper depleted cells using buffers with increasing imidazole concentrations. Data from the 2 to 50 kDa range indicate that high extra-cellular copper substantially altered both intra-cellular protein expression as well as the composition of the secretome. In the lysate 15 proteins were found up-regulated, while 6 proteins were down-regulated. In culture media 21 proteins were increased while 4 proteins were decreased in abundance. Copper-coated protein chips revealed the presence of 18 high-affinity copper-binding proteins. Further identification is necessary to determine the exact cellular roles of the discovered proteins.  相似文献   

17.
Constitutive upregulation and a higher degree of induction of drug metabolism and disposition-related genes were found in a three-dimensional HepG2 culture. The upregulated genes are believed to be regulated by different regulatory factors. Global gene expression analysis using the Affymetrix GeneChip indicated that altered expression of microtubule-related genes may change the expressed levels of drug metabolizing and disposition genes. Stabilization of microtubule molecules with docetaxel, a tubulin-stabilizing agent, in the two-dimensional culture showed gene expression patterns similar to those found in the three-dimensional culture, indicating that the culture environment affects drug metabolism functions in HepG2 cells.  相似文献   

18.
在线虫C.elegans的发育过程中,时序调节微小RNA起着很重要的作用.其中有两种关键基因lin 4和let 7长约22个核苷酸,不编码蛋白质,参与基因表达的负调节,这可能是翻译水平上的调节与发生在转录后的RNA干涉不同.研究表明它们在大小、结构和功能上具有保守性.主要从miRNA的发现、分布、形成、作用4个方面进行了综述.  相似文献   

19.
In a number of adverse drug reactions leading to hepatotoxicity drug metabolism is thought to be involved by generation of reactive metabolites from nontoxic drugs. In this study, an in vitro assay was developed for measurement of the impact of metabolic activation of compound on the cytotoxicity toward a human hepatic cell line. HepG2 cells were treated for 6 h with compound in the presence or absence of rat liver S9-mix, and the viability was measured using the MTT test. The cytotoxicity of cyclophosphamide was substantially increased by S9-mix in the presence of NADPH. Three NADPH sources were tested: NADPH (1 mmol/L) or NADPH regenerating system with either NADP+/glucose 6-phosphate (G6P) or NADP+/isocitrate. All three NADPH sources increased the cytotoxicity of cyclophosphamide to a similar extent. Eight test compounds known to cause hepatotoxicity were tested. For these, only the cytotoxicity of diclofenac was increased by S9 enzymes when an NADPH regenerating system was used. The increased toxicity was NADPH dependent. Reactive drug metabolites of diclofenac, formed by NADPH-dependent metabolism, were identified by LC-MS. Furthermore, an increase in toxicity, not related to enzymatic activity but to G6P, was observed for diclofenac and minocycline. Tacrine and amodiaquine displayed decreased toxicity with S9-mix, and carbamazepine, phenytoin, bromfenac and troglitazone were nontoxic at all tested concentrations, with or without S9-mix. The results show that this method, with measurement of the cytotoxicity of a compound in the presence of an extracellular metabolizing system, may be useful in the study of cytotoxicity of drug metabolites.  相似文献   

20.
The PI3K/PTEN/Akt pathway has been established as a core signaling pathway that is crucial for the integration of neurons into neuronal circuits and the maintenance of the architecture and function of neurons in the adult brain. Akt1–3 kinases are specifically activated by two phosphorylation events on residues Thr308 and Ser473 upon growth factor signaling, which subsequently phosphorylate a vast cohort of downstream targets. However, we still lack a clear understanding of the complexity and regulation of isoform specificity within the PI3K/PTEN/Akt pathway. We utilized a capillary-based isoelectric focusing method to study dynamics of Akt phosphorylation in neuronal cells and the developing brain and identify previously undescribed features of Akt phosphorylation and activation. First, we show that the accumulation of multiple phosphorylation events on Akt forms occur concurrently with Ser473 and Thr308 phosphorylation upon acute PI3K activation and provide evidence for uncoupling of Ser473 and Thr308 phosphorylation, as well as differential sensitivities of Akt1 forms upon PI3K inhibition. Second, we detect a transient shift in Akt isoform phosphorylation and activation pattern during early postnatal brain development, at stages corresponding to synapse development and maturation. Third, we show differential sensitivities of Ser473-Akt species to PTEN deletion in mature neurons, which suggests inherent differences in the Akt pools that are accessible to growth factors as compared with the pools that are controlled by PTEN. Our study demonstrates the presence of complex phosphorylation events of Akt in a time- and signal-dependent manner in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号