首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photodynamic activity of three compounds structurally related to cercosporin (iso-cercosporin, phleichrome, iso-phleichrome) and rubellin, a pigment possessing an anthra-quinone-like structure, was studied. As previously reported for cercosporin, iso-cercosporin, phleichrome, iso-phleichrome and rubellin, when irradiated by an incandescent lamp, induced oxygen uptake and malondialdehyde (MDA) formation in pea stem and rat liver mitochondria and microsomes. All these compounds were also capable of inhibiting MDA formation induced by the peroxidizing system ascorbate-FeSO4. Circumstantial evidence suggests that the compounds, as shown for cercosporin, induce a lipoperoxidative degradation of the polyunsaturated fatty acids of cell membranes when irradiated by light, but at the same time, they are able to lower the lipoperoxidation induced by ferrous ions.  相似文献   

2.
Summary A histochemical analysis involving tinctorial and solubility tests was pursued in conjunction with electron microscopy for the purpose of identifying the dark brown epidermal pigment of a barnacle (Balanus eburneus) as melanin and/or ommochrome. Histochemically, comparisons were made with other brown pigments located in the subcarapal epidermis of another crustacean, the fiddler crab (Uca pugilator), the dorsal skin of the red-backed salamander (Plethodon cinereus), the liver and testis of a slider turtle (Chrysemys sp.) and the substantia nigra of human brain. The solubility properties of the pigment of the two crustacean invertebrates were in general similar to one another and markedly different from the pigment of the three vertebrates. Insolubility in appropriate solvents classified the vertebrate pigment as melanin. The invertebrate pigment, however, which was soluble in the ommochrome solvents, concentrated sulfuric and formic acids and 2-chloroethanol, remained insoluble in the ommochrome solvents, dilute aqueous and methanolic hydrochloric acid and dilute sulfuric acid. On the basis of these solubilities, an unequivocal classification of the invertebrate pigment as either melanin or ommochrome did not appear possible. The tinctorial and electron microscopic properties of the barnacle pigment were also equally ambiguous in regard to its specific classification.  相似文献   

3.
Summary A study of the liver pigment cells of Rana esculenta L. has been performed on both liver in toto and cells in culture. Ultrastructural and cytochemical analyses showed a close relationship between this visceral pigment cell system and the cells of hepatic macrophage lineage. Like the latter, the liver pigment cells present phagocytic activity, in the sinusoids and in vitro, and give a positive response to tests for peroxidase and lipase. The liver pigment cells are isolated, together with the Kupffer cells, from the sinusoidal cell fraction of the liver. In culture, they maintain their melanogenetic ability, demonstrated by the presence of dopaoxidase activity in the soluble, membranous, and melanosome fractions. Analysis of the cultures showed that as culture time increased, so did melanosome dopaoxidase activity, the number of pigmented fields, and the level of pigmentation of the cells. The values of dopaoxidase activity of the pigment cells in culture show the same seasonal oscillations as the system in toto, indicating that the cells maintain an internal clock, at least in the first 72 h of culture. There is evidence that the pigment cells are macrophages which can express a melanogenetic function. Our results and other experimental data provide a basis for hypothesizing that the pigment cells in Rana esculenta L. liver may derive from, or have a common origin with, the Kupffer cells.  相似文献   

4.
A new pigment causing intense photosensitivity in rats was isolated from alcohol-treated Chlorella cells and identified as 10-hydroxypheophorbide a by chemical analysis, chromatography, and visible, infrared, nuclear magnetic resonance and mass spectroscopy methods.

When rats administered orally with this pigment were exposed immediately to the visible light, signs of the intense photosensitivity including death occurred after a few hours of photoirradiation. The photosensitizing activity of this pigment in rats was markedly higher than those of pheophorbide a from Chlorella cells and pyropheophorbide a from pickled greens. Chlorophylls a and b, pheophytin a, and methyl and ethyl pheophorbides a were inactive under the same experimental conditions  相似文献   

5.
Four nonpathogenic and nontoxigenic Epicoccum nigrum strains were evaluated for their growth, morphology and pigment producing ability in three complex and one defined liquid media. Epicoccum nigrum IBT 41028 produced pigments in all the four media tested with a maximum pigment of 3.68 AU at 410 nm in M1 medium (unoptimized) containing 5 g/l yeast autolysate. The color hue of the crude pigment extracts ranged from 74 to 102 exhibiting dark orange to green-yellow color. Pelleted morphology was shown to have a positive influence on the pigment production by E. nigrum strain IBT 41028 in the liquid media, and the use of Bis-tris buffer was found to diminish or reduce the pellet formation. Since Monascus is a well known pigment producer on rice. Pigment producing ability of E. nigrum IBT 41028 was tested on rice and compared to liquid media with Monascus ruber IBT 7904 as control. Though, both genera preferred rice but E. nigrum produced 4.6 folds higher pigment in the liquid unoptimized fermentation medium compared to M. ruber. Solid phase extraction and subsequently HPLC-DAD analysis of the crude pigment extracts showed qualitative as well as quantitative variation in the pigment composition under solid and liquid cultivations.  相似文献   

6.
The production of pigment by the molds belonging to the genus Monascus in a submerged culture was examined. The extracellular pigment was mainly studied. Monascus sp. No. 2 was found to be the most potent pigment producer. The optimum cultural conditions were: pH of the medium, 6.5; the temperature, 25°C; carbon sources, glucose or ethyl alcohol; nitrogen sources, polypeptone, yeast extract, monosodium glutamate or casamino acids. Glycine, l-threonine, l-arginine, l-alanine and l-tyrosine were found to be the most effective substances promoting pigment production.

Mycelial forms of this strain were correlated with pigment formation in submerged culture. As it grew into pellet type, the yield of pigment was at high level.

The Monascus-pigment in the fermentation liquid seemed to be firmly bound to the protein-like substances which made the pigment apparently soluble.  相似文献   

7.
Herein, a denitrifying bacterium that produced greenish fluorescent pigment under aerobic conditions was accidentally isolated from municipal sewage sludge. Using 16S-rDNA sequence analysis, we identified the isolate as Pseudomonas aeruginosa R12, with 100% similarity. We achieved the highest pigment production rate (1.36 mg/L/h) in a 1-L bioreactor under aerobic conditions, using the optimal culture parameters determined in this study: 37°C, pH 8.0, 200 rpm, 5 wm aeration, and medium containing succinate and (NH4)2SO4. The pigment was not a secondary metabolite and had no antibacterial activity on its co-isolates. Under anaerobic conditions, the isolate produced mainly N2 and behaved as a strong denitrifier, displaying synergistic denitrification with co-isolated denitrifiers. To our knowledge, herein we have described the first instance in which P. aeruginosa R12 produces a fluorescent pigment under aerobic conditions. This newly-isolated strain therefore shows potential as a commercial resource for natural pigment.  相似文献   

8.
A methanol-utilizing bacterium, Protaminobacter ruber, formed a green pigment, when it was grown on 1,2-propanediol as a sole carbon and energy source. The pigment was identified as bacteriochlorophyll a by the absorption spectrum resembling the pigment from photosynthetic bacteria and by the exact stoichiometric relationship among the original pigment, the pigment treated to remove magnesium (bacteriopheophytin) and magnesium ion obtained from the pigment. Bacteriochlorophyll formation was stimulated by the exposure to light during the relatively early stage of the growth, while the continuous light exposure completely prevented the pigment formation. Aeration was also necessary for the pigment synthesis as well as the bacterial growth. Electron micrographs of thin section of P. ruber cells cultured in the intermittent light showed the probable existence of a chromatophore-like structure.  相似文献   

9.
Two series of cationic porphyrins meso-(3N-methylpyridinium)phenylporphyrin (3P1, 3P2c, 3P2t, 3P3 and 3P4) and meso-(4N-methylpyridinium)phenylporphyrin (4P1, 4P2c, 4P2t, 4P3 and 4P4) were studied to obtain a comprehensive understanding of factors that influence the binding of cationic porphyrins to liposomes and mitochondria, as well as their photodynamic efficiencies in erythrocytes. Binding and photodynamic efficiency were found to be inversely proportional to the number of positively charged groups and directly proportional to n-octanol/water partition coefficients (log POW), except for the cis molecules 3P2c and 4P2c. In the cis molecules, binding and photodynamic efficiency were much higher than expected, indicating that specific interactions not accounted by log POW enhance photodynamic efficiency. The effect of mitochondrial transmembrane electrochemical potentials on cationic porphyrin binding constants was estimated to be as large as 15%, and may be useful to selectively target this organelle when promoting photodynamic therapy to induce apoptosis.  相似文献   

10.
The cytochromes of the bacteriumStreptomyces erythreus have been investigated. Membrane-bounda-, b-, andc-type cytochromes were found together with a green pigment, which was found in both a soluble and membrane-bound form. Cells containing the green pigment exhibited cyanide-insensitive oxygen uptake. The CO-binding pigments included cytochromea 3, ab-type cytochrome, cytochrome P450, and the green pigment. Photodissociation spectra at various low temperatures, in the presence or absence of oxygen, revealed cytochromeaa 3 to be the predominant cytochrome terminal oxidase. The green pigment was capable of electron transport; the relationship of the pigment to the remainder of the electron transport chain remains to be ascertained.  相似文献   

11.
12.
The ultrastructural characteristics of melanosomes and premelanosomes observed during the biogenesis of melanosomes in liver pigment cells of the neotenic cave salamander Proteus anguinus (Proteidae) are described. It is well known that amphibian liver pigment cells, also known as Kupffer cells (KC), contain melanosomes and are able to synthesize melanin. Liver pigment cells of P. anguinus contain numerous siderosomes and melanosomes. The melanosomes are grouped together within single‐membrane‐bounded bodies, named as ‘clusters of melanosomes’ or ‘melanosomogenesis centers’. Inside such clusters, different structures are present: (1) filament‐like structures, characteristic of the initial stage of melanosome biogenesis, (2) medium electron‐dense melanosomes in different stages of melanization, (3) melanosomes with an electron‐dense cortical area and a less electron‐dense medullar area, and (4) uniformly highly electron‐dense mature melanosomes or melanin granules. Histochemical and cytochemical dihydroxyphenylalanine (DOPA) oxidase reactions in pigment cells were positive. Our results confirm the ability of amphibian KC to synthesize melanin and contribute to this little known subject.  相似文献   

13.
Summary Pteridine eye pigment, indicative of the activity of theor +-allele, was observed inor/or larvae ofPlatynereis, derived from transplantedor +/or oocytes. These heterozygous oocytes had grown up inor/or hosts, themselves deficient in pteridine pigment synthesis. It is therefore concluded that theor + gene product, responsible for pteridine pigment synthesis in theor/or larvae, had been synthesized by the oocyte genomes.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

14.
Based on mass spectrometry and electronic absorption spectroscopy, the main pigment fromXanthomonas populi (synonym:Aplanobacter populi) was identified as a nonbrominated aryl-heptaene. TheX. populi pigment was indistinguishable—on the basis of cochromatography and electronic absorption spectroscopy—from an authentic sample of a xanthomonadin belonging to Pigment Group 11, previously found as minor components in strains belonging to theXanthomonas campestris taxospecies (specifically in theXanthomonas pruni andXanthomonas vesicatoria nomenspecies). Possession of a xanthomonadin pigment confirms the placement ofX. populi in the genusXanthomonas and this particular pigment serves to distinguishX. populi from the five other taxospecies presently assigned to that genus. TheXanthomonas sp. isolated fromSalix, which purportedly shows affinities toX. populi, forms a monobrominated aryl-polyene pigment and —on that basis—is unlikeX. populi.  相似文献   

15.
A strain of Pseudomonas fluorescens was capable of co-metabolizing 3-chlorobenzoic acid with the production of a chlorinated catechol black pigment. A peroxidase and another enzymatic activity referred to as a polyphenol oxidase were found to be involved in the oxidation of 4-chlorocatechol to 4-chloro-1,2-benzoquinone, i.e. in the production of highly reactive substrates for pigment formation. Therefore, P. fluorescens cells were seen to take an active part not only in 3-chlorobenzoate mineralization but also in overall pigment production. pH was found to be a key parameter in the regulation of the activity of P. fluorescens oxidoreductive enzymes. Ultrastructural investigations showed that electron dense granules of pigment were distributed throughout the cytoplasm of Pseudomonas fluorescens cells grown in presence of 3-chlorobenzoate, as confirmed also by Thiéry cytochemical investigations.In these cells, an extensive contraction of the cytoplasm as well as a significant damage to the cell wall after two days of incubation, suggested that pigment production caused a premature death of the cells accompanied by the leakage of the cell content. Pigment production seemed to occur mostly in the cytoplasmic context where the electron dense material accumulates until it is released in the medium after the cell lysis.Abbreviations 3-CBA 3-chlorobenzoic acid - BA benzoic acid - 4-CC 4-chlorocatechol - 3-CC 3-chlorocatechol - MBTH 3-methyl-2-benzothiazolinone hydrazone - l-DOPA l-3,4-dihydroxyphenyl-alanine - SPB sodium phosphate buffer  相似文献   

16.
Summary A simple method to isolate and culture liver pigment cells fromRana esculenta L. is described which utilizes a pronase digestion of perfused liver, followed by sedimentation on a Ficoll gradient. A first characterization of isolated and cultured cells is also reported. They show both positivity for nonspecific esterases, and phagocytosis ability, like the cells of phagocytic lineage. Furthermore, after stimulation with a phorbol ester, these cells generate superoxide anions. At phase contrast microscope, liver pigment cells present variability in size, morphology, and in their content of dark-brown granules. Inasmuch as a cell extract obtained from cultured cells exhibits a specific protein band with dopa-oxidase activity, when run on nondenaturing polyacrylamide gel electrophoresis, liver pigment cells fromRana esculenta L. should not be considered as melanophages, but as cells that can actively synthesize melanin. The method presented here seems to be useful to more directly investigate this extra-cutaneous melanin-containing cell system and to clarify its physiologic relevance. This research was partly supported by grant of Ministero della Pubblica Istruzione, Ricerca Scientifica.  相似文献   

17.
The unicellular eukaryote, Blepharisma japonicum, is a light-sensitive ciliated protozoa. It possesses a photoreceptor pigment called blepharismin that plays critical roles in defensive behavior against predators and step-up photophobic response. In addition, the pigment generates reactive oxygen species such as singlet oxygen and hydroxyl radicals which contribute to photodynamic action. Previous studies reported that intense light (>300 W m−2) induced rapid photodynamic killing (necrosis) characterized by cell swelling and plasma efflux, while moderate light (3-30 W m−2) only induced pigment extrusion and photooxidation. We have found that moderate light (5 W m−2) induced apoptosis-like cell death. Microscopically it was found that >3 h of moderate light irradiation induced macronuclear condensation and plasma efflux without cell swelling. Single cell gel electrophoresis assay showed that DNA fragmentation occurred between 1 and 3 h of irradiation, and the condensed macronuclei contained quite fragmented DNA. Macronuclear DNA extracted from light-irradiated cells contained DNA fragments of 180-200 and 360-400 bp, which were seen as apoptosis ladders.  相似文献   

18.
An incomplete oligoketide (PK; ‘polyketide’) gene cluster, aur1, responsible for the production of an angucycline-like antibiotic auricin was identified in Streptomyces aureofaciens CCM 3239. A region downstream of the aur1 was cloned and sequenced, revealing 28 new genes encoding putative protein products involved in deoxysugar biosynthesis and other putative PK-related biosynthetic functions. In addition, a gene, bpsA, encoding a protein similar to non-ribosomal peptide synthetases (NRPSs) was identified in this region. A deduced protein product of the gene showed the highest similarity to NRPSs IndC from Erwinia chrysanthemi and BpsA from Streptomyces lavendulae, both involved in the biosynthesis of a blue pigment indigoidine. S. aureofaciens CCM 3239 was found to produce an extracellular blue pigment with identical properties as indigoidine. A deletion mutant of bpsA in S. aureofaciens CCM 3239 failed to produce the blue pigment. In addition, the deletion of bpsA had a positive effect on auricin production. The results indicate the involvement of the bpsA gene in biosynthesis of the indigoidine blue pigment in S. aureofaciens CCM 3239.  相似文献   

19.
Rhizobium leguminosarum strain VF39, isolated from nodules of field-grown faba beans in the Federal Republic of Germany, was shown to contain six plasmids ranging in molecular weight from 90 to 400 Md. Hybridisation to nif gene probes, plasmid curing, and mobilisation to other strains of Rhizobium and to Agrobacterium showed that the third largest plasmid, pRleVF39d (220 Md), carried genes for nodulation and nitrogen fixation. This plasmid was incompatible with pRL10JI, the Sym plasmid of R. leguminosarum strain JB300. Of the other plasmids, the two smallest (pRleVF39a and pRleVF39b, 90 and 160 Md respectively) were shown to be self-transmissible at a low frequency. Although melanin production is as yet unreported in strains of R. leguminosarum biovar viceae, strain VF39 produced a dark pigment, which, since it was not produced on minimal media and its production was greatly enhanced by the presence of tyrosine in the media, is probably melanin-like. Derivatives of VF39 cured of pRleVF39a no longer produced this pigment, but regained the ability to produce it when this plasmid was transferred into them. Strains of Agrobacterium tumefaciens, R. meliloti, and some strains of R. leguminosarum carrying pRleVF39a did not produce this pigment, indicating perhaps that some genes elsewhere on the VF39 genome are also involved in pigment production. Plasmid pRleVF39a appeared to be incompatible with the cryptic Rhizobium plasmids pRle336b and pRL8JI (both ca. 100 Md), but was compatible with the R. leguminosarum biovar phaseoli Sym plasmids pRP1JI, pRP2JI and pRph51a, all of which also code for melanin production. The absence of pRleVF39a in cured derivatives of VF39 had no effect on the symbiotic performance or competitive ability of this strain.  相似文献   

20.
The aims of this work were to (a) evaluate the susceptibility of endospores of Bacillus cereus, B. licheniformis, B. sphaericus and B. subtilis to photodynamic inactivation using a tricationic porphyrin as photosensitizer, (b) assess the efficiency of adsorption of the photosensitizer in endospore material as a determinant of the susceptibility of endospores of different Bacillus species to photo‐inactivation, (c) determine the value of B. cereus as a model organism for studies of antimicrobial photodynamic inactivation of bacterial endospores. The results of irradiation experiments with endospores of four species of Bacillus showed that B. cereus was the only species for which efficient endospore photo‐inactivation (> 3 log reduction) could be achieved. Endospores of B. licheniformis, B. sphaericus and B. subtilis were virtually resistant to photo‐inactivation with tricationic porphyrin. The amount of porphyrin bound to endospore material was not significantly different between species, regardless of the presence of an exosporium or exosporium‐like outer layer. The sensitivity of endospores to photodynamic inactivation with a tricationic porphyrin is highly variable among different species of the genus Bacillus. The presence of an exosporium in endospores of B. cereus and B. sphaericus, or an exosporium‐like glycoprotein layer in endospores of B. subtilis, did not affect the amount of bound photosensitizer and did not explain the inter‐species variability in susceptibility to photodynamic inactivation. The results imply that the use of B. cereus as a more amenable surrogate of the exosporium‐producing B. anthracis must be carefully considered when testing new photosensitizers for their antimicrobial photo‐inactivation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号