首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Six1 controls patterning of the mouse otic vesicle   总被引:3,自引:0,他引:3  
Six1 is a member of the Six family homeobox genes, which function as components of the Pax-Six-Eya-Dach gene network to control organ development. Six1 is expressed in otic vesicles, nasal epithelia, branchial arches/pouches, nephrogenic cords, somites and a limited set of ganglia. In this study, we established Six1-deficient mice and found that development of the inner ear, nose, thymus, kidney and skeletal muscle was severely affected. Six1-deficient embryos were devoid of inner ear structures, including cochlea and vestibule, while their endolymphatic sac was enlarged. The inner ear anomaly began at around E10.5 and Six1 was expressed in the ventral region of the otic vesicle in the wild-type embryos at this stage. In the otic vesicle of Six1-deficient embryos, expressions of Otx1, Otx2, Lfng and Fgf3, which were expressed ventrally in the wild-type otic vesicles, were abolished, while the expression domains of Dlx5, Hmx3, Dach1 and Dach2, which were expressed dorsally in the wild-type otic vesicles, expanded ventrally. Our results indicate that Six1 functions as a key regulator of otic vesicle patterning at early embryogenesis and controls the expression domains of downstream otic genes responsible for respective inner ear structures. In addition, cell proliferation was reduced and apoptotic cell death was enhanced in the ventral region of the otic vesicle, suggesting the involvement of Six1 in cell proliferation and survival. In spite of the similarity of otic phenotypes of Six1- and Shh-deficient mice, expressions of Six1 and Shh were mutually independent.  相似文献   

2.
FGF signaling is required during multiple stages of inner ear development in many different vertebrates, where it is involved in induction of the otic placode, in formation and morphogenesis of the otic vesicle as well as for cellular differentiation within the sensory epithelia. In this study we have looked to define the redundant and conserved roles of FGF3, FGF8 and FGF10 during the development of the murine and avian inner ear. In the mouse, hindbrain-derived FGF10 ectopically induces FGF8 and rescues otic vesicle formation in Fgf3 and Fgf10 homozygous double mutants. Conditional inactivation of Fgf8 after induction of the placode does not interfere with otic vesicle formation and morphogenesis but affects cellular differentiation in the inner ear. In contrast, inactivation of Fgf8 during induction of the placode in a homozygous Fgf3 null background leads to a reduced size otic vesicle or the complete absence of otic tissue. This latter phenotype is more severe than the one observed in mutants carrying null mutations for both Fgf3 and Fgf10 that develop microvesicles. However, FGF3 and FGF10 are redundantly required for morphogenesis of the otic vesicle and the formation of semicircular ducts. In the chicken embryo, misexpression of Fgf3 in the hindbrain induces ectopic otic vesicles in vivo. On the other hand, Fgf3 expression in the hindbrain or pharyngeal endoderm is required for formation of the otic vesicle from the otic placode. Together these results provide important insights into how the spatial and temporal expression of various FGFs controls different steps of inner ear formation during vertebrate development.  相似文献   

3.
The vertebrate inner ear develops from initially 'simple' ectodermal placode and vesicle stages into the complex three-dimensional structure which is necessary for the senses of hearing and equilibrium. Although the main morphological events in vertebrate inner ear development are known, the genetic mechanisms controlling them are scarcely understood. Previous studies have suggested that the otic placode is induced by signals from the chordamesoderm and the hindbrain, notably by fibroblast growth factors (Fgfs) and Wnt proteins. Here we study the role of Fgf8 as a bona-fide hindbrain-derived signal that acts in conjunction with Fgf3 during placode induction, maintenance and otic vesicle patterning. Acerebellar (ace) is a mutant in the fgf8 gene that results in a non-functional Fgf8 product. Homozygous mutants for acerebellar (ace) have smaller ears that typically have only one otolith, abnormal semi-circular canals, and behavioral defects. Using gene expression markers for the otic placode, we find that ace/fgf8 and Fgf-signaling are required for normal otic placode formation and maintenance. Conversely, misexpression of fgf8 or Fgf8-coated beads implanted into the vicinity of the otic placode can increase ear size and marker gene expression, although competence to respond to the induction appears restricted. Cell transplantation experiments and expression analysis suggest that Fgf8 is required in the hindbrain in the rhombomere 4-6 area to restore normal placode development in ace mutants, in close neighbourhood to the forming placode, but not in mesodermal tissues. Fgf3 and Fgf8 are expressed in hindbrain rhombomere 4 during the stages that are critical for placode induction. Joint inactivation of Fgf3 and Fgf8 by mutation or antisense-morpholino injection causes failure of placode formation and results in ear-less embryos, mimicking the phenotype we observe after pharmacological inhibition of Fgf-signaling. Fgf8 and Fgf3 together therefore act during induction and differentiation of the ear placode. In addition to the early requirement for Fgf signaling, the abnormal differentiation of inner ear structures and mechanosensory hair cells in ace mutants, pharmacological inhibition of Fgf signaling, and the expression of fgf8 and fgf3 in the otic vesicle demonstrate independent Fgf function(s) during later development of the otic vesicle and lateral line organ. We furthermore addressed a potential role of endomesomerm by studying mzoep mutant embryos that are depleted of head endomesodermal tissue, including chordamesoderm, due to a lack of Nodal-pathway signaling. In these embryos, early placode induction proceeds largely normally, but the ear placode extends abnormally to midline levels at later stages, suggesting a role for the midline in restricting placode development to dorsolateral levels. We suggest a model of zebrafish inner ear development with several discrete steps that utilize sequential Fgf signals during otic placode induction and vesicle patterning.  相似文献   

4.
Several members of the FGF gene family have been shown to intervene from various tissue sources to direct otic placode induction and otic vesicle formation. In this study we define the roles of FGF8, found in different expression domains during this process, in mice and chickens. By conditional inactivation of Fgf8 in distinct tissue compartments we demonstrate that Fgf8 is required in the mesoderm and endoderm during early inner ear development. In the chicken embryo, overexpression of Fgf8 from various tissue sources during otic specification leads to a loss of otic tissue. In contrast ectopic overexpression of Fgf10, a major player during murine otic induction, does not influence otic vesicle formation in chicken embryos but results in the formation of ectopic structures with a non-otic character. This study underlines the crucial role of a defined Fgf8 expression pattern controlling inner ear formation in vertebrates.  相似文献   

5.
Six genes are widely expressed during vertebrate embryogenesis, suggesting that they are implicated in diverse differentiation processes. To determine the functions of the Six1 gene, we constructed Six1-deficient mice by replacing its first exon by the beta-galactosidase gene. We have previously shown that mice lacking Six1 die at birth due to thoracic skeletal defects and severe muscle hypoplasia affecting most of the body muscles. Here, we report that Six1(-/-) neonates also lack a kidney and thymus, as well as displaying a strong disorganisation of craniofacial structures, namely the inner ear, the nasal cavity, the craniofacial skeleton, and the lacrimal and parotid glands. These organ defects can be correlated with Six1 expression in the embryonic primordium structures as revealed by X-Gal staining at different stages of embryogenesis. Thus, the fetal abnormalities of Six1(-/-) mice appear to result from the absence of the Six 1 homeoprotein during early stages of organogenesis. Interestingly, these Six1 defects are very similar to phenotypes caused by mutations of Eya 1, which are responsible for the BOR syndrome in humans. Close comparison of Six1 and Eya 1 deficient mice strongly suggests a functional link between these two factors. Pax gene mutations also lead to comparable phenotypes, suggesting that a regulatory network including the Pax, Six and Eya genes is required for several types of organogenesis in mammals.  相似文献   

6.
Requirements for FGF3 and FGF10 during inner ear formation   总被引:8,自引:0,他引:8  
Members of the fibroblast growth factor (FGF) gene family control formation of the body plan and organogenesis in vertebrates. FGF3 is expressed in the developing hindbrain and has been shown to be involved in inner ear development of different vertebrate species, including zebrafish, Xenopus, chick and mouse. In the mouse, insertion of a neomycin resistance gene into the Fgf3 gene via homologous recombination results in severe developmental defects during differentiation of the otic vesicle. We have addressed the precise roles of FGF3 and other FGF family members during formation of the murine inner ear using both loss- and gain-of-function experiments. We generated a new mutant allele lacking the entire FGF3-coding region but surprisingly found no evidence for severe defects either during inner ear development or in the mature sensory organ, suggesting the functional involvement of other FGF family members during its formation. Ectopic expression of FGF10 in the developing hindbrain of transgenic mice leads to the formation of ectopic vesicles, expressing some otic marker genes and thus indicating a role for FGF10 during otic vesicle formation. Expression analysis of FGF10 during mouse embryogenesis reveals a highly dynamic pattern of expression in the developing hindbrain, partially overlapping with FGF3 expression and coinciding with formation of the inner ear. However, FGF10 mutant mice have been reported to display only mild defects during inner ear differentiation. We thus created double mutant mice for FGF3 and FGF10, which form severely reduced otic vesicles, suggesting redundant roles of these FGFs, acting in combination as neural signals for otic vesicle formation.  相似文献   

7.
Previous studies have suggested a role of the homeodomain Six family proteins in patterning the developing vertebrate head that involves appropriate segmentation of three tissue layers, the endoderm, the paraxial mesoderm and the neural crest cells; however, the developmental programs and mechanisms by which the Six genes act in the pharyngeal endoderm remain largely unknown. Here, we examined their roles in pharyngeal pouch development. Six1-/- mice lack thymus and parathyroid and analysis of Six1-/- third pouch endoderm demonstrated that the patterning of the third pouch into thymus/parathyroid primordia is initiated. However, the endodermal cells of the thymus/parathyroid rudiments fail to maintain the expression of the parathyroid-specific gene Gcm2 and the thymus-specific gene Foxn1 and subsequently undergo abnormal apoptosis, leading to a complete disappearance of organ primordia by E12.5. This thus defines the thymus/parathyroid defects present in the Six1 mutant. Analyses of the thymus/parathyroid development in Six1-/-;Six4-/- double mutant show that both Six1 and Six4 act synergistically to control morphogenetic movements of early thymus/parathyroid tissues, and the threshold of Six1/Six4 appears to be crucial for the regulation of the organ primordia-specific gene expression. Previous studies in flies and mice suggested that Eya and Six genes may function downstream of Pax genes. Our data clearly show that Eya1 and Six1 expression in the pouches does not require Pax1/Pax9 function, suggesting that they may function independently from Pax1/Pax9. In contrast, Pax1 expression in all pharyngeal pouches requires both Eya1 and Six1 function. Moreover, we show that the expression of Tbx1, Fgf8 and Wnt5b in the pouch endoderm was normal in Six1-/- embryos and slightly reduced in Six1-/-;Six4-/- double mutant, but was largely reduced in Eya1-/- embryos. These results indicate that Eya1 appears to be upstream of very early events in the initiation of thymus/parathyroid organogenesis, while Six genes appear to act in an early differentiation step during thymus/parathyroid morphogenesis. Together, these analyses establish an essential role for Eya1 and Six genes in patterning the third pouch into organ-specific primordia.  相似文献   

8.
Fgf3 and Fgf10 are required for mouse otic placode induction   总被引:1,自引:0,他引:1  
The inner ear, which contains the sensory organs specialised for audition and balance, develops from an ectodermal placode adjacent to the developing hindbrain. Tissue grafting and recombination experiments suggest that placodal development is directed by signals arising from the underlying mesoderm and adjacent neurectoderm. In mice, Fgf3 is expressed in the neurectoderm prior to and concomitant with placode induction and otic vesicle formation, but its absence affects only the later stages of otic vesicle morphogenesis. We show here that mouse Fgf10 is expressed in the mesenchyme underlying the prospective otic placode. Embryos lacking both Fgf3 and Fgf10 fail to form otic vesicles and have aberrant patterns of otic marker gene expression, suggesting that FGF signals are required for otic placode induction and that these signals emanate from both the hindbrain and mesenchyme. These signals are likely to act directly on the ectoderm, as double mutant embryos showed normal patterns of gene expression in the hindbrain. Cell proliferation and survival were not markedly affected in double mutant embryos, suggesting that the major role of FGF signals in otic induction is to establish normal patterns of gene expression in the prospective placode. Finally, examination of embryos carrying three out of the four mutant Fgf alleles revealed intermediate phenotypes, suggesting a quantitative requirement for FGF signalling in otic vesicle formation.  相似文献   

9.
The fate specification of the developing vertebrate inner ear could be determined by complex regulatory genetic pathways involving the Pax2/5/8 genes. Pax2 expression has been reported in the otic placode and vesicle of all vertebrates that have been studied. Loss-of-function experiments suggest that the Pax2 gene plays a key role in the development of the cochlear duct and acoustic ganglion. Despite all these data, the role of Pax2 gene in the specification of the otic epithelium is still only poorly defined. In the present work, we report a detailed study of the spatial and temporal Pax2 expression patterns during the development of the chick inner ear. In the period analysed, Pax2 is expressed only in some presumptive sensory patches, but not all, even though all sensory patches show the scattered Pax2 expression pattern later on. We also show that Pax2 is also expressed in several non-sensory structures.  相似文献   

10.
Cell fate specification during inner ear development is dependent upon regional gene expression within the otic vesicle. One of the earliest cell fate determination steps in this system is the specification of neural precursors, and regulators of this process include the Atonal-related basic helix-loop-helix genes, Ngn1 and NeuroD and the T-box gene, Tbx1. In this study we demonstrate that Eya1 signaling is critical to the normal expression patterns of Tbx1, Ngn1, and NeuroD in the developing mouse otocyst. We discuss a potential mechanism for the absence of neural precursors in the Eya1-/- inner ears and the primary and secondary mechanisms for the loss of cochleovestibular ganglion cells in the Eya1bor/bor hypomorphic mutant.  相似文献   

11.
Six1 is required for the early organogenesis of mammalian kidney   总被引:12,自引:0,他引:12  
  相似文献   

12.
13.
14.
在脊椎动物内耳发育中, Six1、Six4、Pax2、Pax8、Foxi1、Dlx5、Gbx2、Irx2/3、Msx1等基因作为核心调控基因参与听基板的诱导过程。文章通过生物信息学方法, 对小鼠内耳发育的核心转录因子进行保守性分析并研究其相互调控关系, 得到小鼠内耳发育过程中核心转录因子的基因调控网络。与文献中已知的小鼠内耳发育基因调控关系相比, Pax2、Pax8、Foxi1、Dlx5基因在内耳发育中仍然起主要调控者的角色, Six1则处于被多个转录因子调节的地位, Gbx2、Irx2/3、Msx1在调控网络中也起到重要作用。对出现的差异进行了合理的分析, 同时结合构建的调控网络预测了可能存在的Msx1对Six1、Gbx2的调控作用。序列预测结果也发现了一些新的调控关系, 所涉及的转录因子包括Sox5、Lhx2、Rax、Otx1、Otx2、Pitx1、Pitx2、Nkx2-5、Irx4、Irx6、Dlx2、Hmx1/2/3、Pou4f3、Pax4、Tlx2。文章为深入了解内耳发育调控机制提供了基础信息。  相似文献   

15.
The inner ear, which contains sensory organs specialized for hearing and balance, develops from an ectodermal placode that invaginates lateral to hindbrain rhombomeres (r) 5-6 to form the otic vesicle. Under the influence of signals from intra- and extraotic sources, the vesicle is molecularly patterned and undergoes morphogenesis and cell-type differentiation to acquire its distinct functional compartments. We show in mouse that Fgf3, which is expressed in the hindbrain from otic induction through endolymphatic duct outgrowth, and in the prospective neurosensory domain of the otic epithelium as morphogenesis initiates, is required for both auditory and vestibular function. We provide new morphologic data on otic dysmorphogenesis in Fgf3 mutants, which show a range of malformations similar to those of Mafb (Kreisler), Hoxa1 and Gbx2 mutants, the most common phenotype being failure of endolymphatic duct and common crus formation, accompanied by epithelial dilatation and reduced cochlear coiling. The malformations have close parallels with those seen in hearing-impaired patients. The morphologic data, together with an analysis of changes in the molecular patterning of Fgf3 mutant otic vesicles, and comparisons with other mutations affecting otic morphogenesis, allow placement of Fgf3 between hindbrain-expressed Hoxa1 and Mafb, and otic vesicle-expressed Gbx2, in the genetic cascade initiated by WNT signaling that leads to dorsal otic patterning and endolymphatic duct formation. Finally, we show that Fgf3 prevents ventral expansion of r5-6 neurectodermal Wnt3a, serving to focus inductive WNT signals on the dorsal otic vesicle and highlighting a new example of cross-talk between the two signaling systems.  相似文献   

16.
The Drosophila eyeless gene plays a central role in fly eye development and controls a subordinate regulatory network consisting of the so, eya and dac genes. All three genes have highly conserved mammalian homologs, suggesting possible conservation of this eye forming regulatory network. sine oculis (so) belongs to the so/Six gene family, and Six3 is prominently expressed in the developing mammalian eye. Eya1 and Dach1 are mammalian homologs of eya and dac, respectively, and although neither Eya1 nor Dach1 knockout mice express prenatal eye defects, possibilities exist for postnatal ocular phenotypes or for functional redundancy between related family members. To examine whether expression relationships analogous to those between ey, so, eya and dac exist in early mammalian oculogenesis, we investigated Pax6, Six3, Eya1 and Dach1 protein expression in murine lens and nasal placode development. Six3 expression in the pre-placode lens ectoderm is initially Pax6-independent, but subsequently both its expression and nuclear localization become Pax6-dependent. Six3, Dach1 and Eya1 nasal expression in pre-placode ectoderm are also initially Pax6-independent, but thereafter become Pax6-dependent. Pax6, Six3, Dach1 and Eya1 are all co-expressed in the developing ciliary marginal zone, a source of retinal stem cells in some vertebrates. An in vitro protein-protein interaction is detected between Six3 and Eya1. Collectively, these findings suggest that the Pax-Eya-Six-Dach network is at best only partly conserved during lens and nasal placode development. However, the findings do not rule out the possibility that such a regulatory network acts at later stages of oculogenesis.  相似文献   

17.
We have cloned a chick homologue of Drosophila dachshund (dac), termed Dach1. Dach1 is the orthologue of mouse and human Dac/Dach (hereafter referred to as Dach1). We show that chick Dach1 is expressed in a variety of sites during embryonic development, including the eye and ear. Previous work has demonstrated the existence of a functional network and genetic regulatory hierarchy in Drosophila in which eyeless (ey, the Pax6 orthologue), eyes absent (eya), and dac operate together to regulate Drosophila eye development, and that ey regulates the expression of eya and dac. We find that in the developing eye of both chick and mouse, expression domains of Dach1 overlap with those of Pax6, a gene required for normal eye development. Similarly, in the developing ear of both mouse and chick, Dach1 expression overlaps with the expression of another Pax gene, Pax2. In the mouse, Dach1 expression in the developing ear also overlaps with the expression of Eya1 (an eya homologue). Both Pax2 and Eya1 are required for normal ear development. Our expression studies suggest that the Drosophila Pax-eya-dac regulatory network may be evolutionarily conserved such that Pax genes, Eya1, and Dach1 may function together in vertebrates to regulate neural development. To address the further possibility that a regulatory hierarchy exists between Pax, Eya, and Dach genes, we have examined the expression of mouse Dach1 in Pax6, Pax2 and Eya1 mutant backgrounds. Our results indicate that Pax6, Pax2, and Eya1 do not regulate Dach1 expression through a simple linear hierarchy.  相似文献   

18.
19.
20.
The mammalian inner ear comprises the cochleovestibular labyrinth, derived from the ectodermal otic placode, and the encasing bony labyrinth of the temporal bone. Epithelial-mesenchymal interactions are thought to control inner ear development, but the modes and the molecules involved are largely unresolved. We show here that, during the precartilage and cartilage stages, Fgf9 is expressed in specific nonsensory domains of the otic epithelium and its receptors, Fgfr1(IIIc) and Fgfr2(IIIc), widely in the surrounding mesenchyme. To address the role of Fgf9 signaling, we analyzed the inner ears of mice homozygous for Fgf9 null alleles. Fgf9 inactivation leads to a hypoplastic vestibular component of the otic capsule and to the absence of the epithelial semicircular ducts. Reduced proliferation of the prechondrogenic mesenchyme was found to underlie capsular hypoplasticity. Semicircular duct development is blocked at the initial stages, since fusion plates do not form. Our results show that the mesenchyme directs fusion plate formation and they give direct evidence for the existence of reciprocal epithelial-mesenchymal interactions in the developing inner ear. In addition to the vestibule, in the cochlea, Fgf9 mutation caused defects in the interactions between the Reissner's membrane and the mesenchymal cells, leading to a malformed scala vestibuli. Together, these data show that Fgf9 signaling is required for inner ear morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号