首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca2+ signal observed in individual fura-2-loaded hepatocytes stimulated with the alpha 1-adrenergic agonist phenylephrine consisted of a variable latency period, a rapid biphasic increase in the cytosolic free Ca2+, followed by a period of maintained elevated cytosolic Ca2+ (plateau phase) that depended on the continued presence of both agonist and external Ca2+. Microinjection of guanosine-5'-O-(3-thiophosphate) elicited a Ca2+ transient with the same basic features. The Ca2+ transient resulting from microinjecting inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) occurred with essentially no latency period and consisted of a rapid spike that decayed back to preinjection levels within 15 s. Microinjection of inositol 1,4,5-trisphosphorothioate (thio-IP3), a nonmetabolizable analog of Ins-1,4,5-P3, elicited a Ca2+ transient that was initially identical to that observed with Ins-1,4,5-P3, except that the cytosolic Ca2+ remained elevated. The maintained thio-IP3-induced Ca2+ increase was dependent on the presence of external Ca2+, suggesting an activation of Ca2+ influx. Reintroduction of external Ca2+ in the presence of 5 microM phenylephrine to Ca(2+)-depleted cells resulted in a 2-fold greater rate of rise in the cytosolic Ca2+ compared to the rate observed upon Ca2+ addition to cells Ca(2+)-depleted by preatement with thapsigargin. The rate of Ca2+ rise upon Ca2+ addition to cells microinjected with thio-IP3 was similar to that observed with phenylephrine. Coinjection of the cells with thio-IP3 plus heparin reduced the rate of Ca2+ rise upon Ca2+ addition to that observed in thapsigargin-treated cells. These data indicate that the mechanism responsible for receptor-mediated stimulation of Ca2+ entry into hepatocytes involves not only capacitative Ca2+ entry but also an additional component mediated directly by Ins-1,4,5-P3.  相似文献   

2.
3.
An initial rapid phase and a subsequent slow phase of 45Ca2+ uptake were observed following the addition of 45Ca2+ to Ca2+-deprived hepatocytes. The magnitude of the rapid phase increased 15-fold over the range 0.1-11 mM extracellular Ca2+ (Ca2+o) and was a linear function of [Ca2+]o. The increases in the rate of 45Ca2+ uptake were accompanied by only small increases in the intracellular free Ca2+ concentration. In cells made permeable to Ca2+ by treatment with saponin, the rate of 45Ca2+ uptake (measured at free Ca2+ concentrations equal to those in the cytoplasm of intact cells) increased as the concentration of saponin increased from 1.4 to 2.5 micrograms per mg wet weight cells. Rates of 45Ca2+ uptake by cells permeabilized with an optimal concentration of saponin were comparable with those of intact cells incubated at physiological [Ca2+o], but were substantially lower than those for intact cells incubated at high [Ca2+o]. It is concluded that Ca2+ which enters the hepatocyte across the plasma membrane is rapidly removed by binding and transport to intracellular sites and by the plasma membrane (Ca2+ + Mg2+)-ATPase and the plasma membrane Ca2+ inflow transporter is not readily saturated with Ca2+o.  相似文献   

4.
Cyclosporine augments reactivity of isolated blood vessels   总被引:5,自引:0,他引:5  
Administration of cyclosporine (CS) as an immunosuppressive agent in clinical transplantation is associated with multiple side effects including nephrotoxicity and hypertension. These two effects could be related in that the renal changes may be secondary to alterations in organ blood flow. The present studies investigate the ability of CS to augment contractile responsiveness in blood vessels from normotensive rats. Isometric force generation was measured in isolated tail arteries and portal veins. CS (8.3×10−6M) potentiated tail artery contractile responses to sympathetic nerve stimulation, exogenous norepinephrine, and increases in extracellular potassium concentration. Portal veins undergo spontaneous contractions which are related to the firing of calcium-driven action potentials in the smooth muscle cells. CS significantly increased the frequency of these spontaneous contractile events. These results suggest that components of CS toxicity may involve a direct action on vascular smooth muscle and/or on vascular adrenergic neurotransmission.  相似文献   

5.
The incubation of isolated hepatocytes with the inhibitor of protein mono ADP-ribosylation, m-iodobenzylguanidine (MIBG), resulted in an increase in the size of the mitochondrial Ca2+ pool, without alteration of the non-mitochondrial Ca2+ store(s). This increase was abolished when the cytosolic free Ca2+ concentration ([Ca2+]i) was buffered by prior loading of the cells with fluo 3. Elevating [Ca2+]i by releasing the endoplasmic reticular Ca2+ store with 2,5-di-(tert-butyl)-1,4-hydroquinone resulted in a synergistic increase in the magnitude of the mitochondrial Ca2+ pool. A role for protein ADP-ribosylation in the intracellular regulation of mitochondrial Ca2+ homeostasis is suggested.  相似文献   

6.
Ca2+-dependent potentiation of muscarinic receptor-mediated Ca2+ elevation   总被引:1,自引:0,他引:1  
Muscarinic receptor-mediated increases in Ca(2+) in SH-SY5Y neuroblastoma cells consist of an initial fast and transient phase followed by a sustained phase. Activation of voltage-gated Ca(2+) channels prior to muscarinic stimulation resulted in a several-fold potentiation of the fast phase. Unlike the muscarinic response under control conditions, this potentiated elevation of intracellular Ca(2+) was to a large extent dependent on extracellular Ca(2+). In potentiated cells, muscarinic stimulation also activated a rapid Mn(2+) entry. By using known organic and inorganic blockers of cation channels, this influx pathway was easily separated from the known Ca(2+) influx pathways, the store-operated pathway and the voltage-gated Ca(2+) channels. In addition to the Ca(2+) influx, both IP(3) production and Ca(2+) release were also enhanced during the potentiated response. The results suggest that a small increase in intracellular Ca(2+) amplifies the muscarinic Ca(2+) response at several stages, most notably by unravelling an apparently novel receptor-activated influx pathway.  相似文献   

7.
We have studied the effects of GABA on cytosolic free Ca2+ concentration ([Ca2+]i) as a means of investigating the role of GABA in adrenal catecholamine (CA) secretion. It was demonstrated that GABA caused an elevation of [Ca2+]i via the GABAA receptor in a concentration-dependent manner, which was well correlated with an increase of 45Ca uptake, an increase of CA release and a depolarization of chromaffin cells assessed with bis-oxonol fluorescence. Since the GABA-induced rise of [Ca2+]i was absolutely dependent on the presence of extracellular Ca2+ and partly sensitive to nifedipine, at least one entry route for Ca2+ facilitated by GABA via a voltage-sensitive Ca2+ channel was suggested. When extracellular Cl- was lowered, GABA-induced CA release, depolarization, and rise of [Ca2+]i were all markedly enhanced. It is possible that GABA plays a modulatory role in the regulation of adrenal CA secretion as a facilitatory modulator.  相似文献   

8.
The effects of glucagon and vasopressin, singly or together, on cytosolic free Ca2+ concentration [( Ca2+]i) and on the 45Ca2+ efflux were studied in isolated rat liver cells. In the presence of 1 mM external Ca2+, glucagon and vasopressin added singly induced sustained increases in [Ca2+]i. The rate of the initial fast phase of the [Ca2+]i increase and the magnitude of the final plateau were dependent on the concentrations (50 pm-0.1 microM) of glucagon and vasopressin. Preincubating the cells with a low concentration of glucagon (0.1 nM) for 2 min markedly accelerated the fast phase and elevated the plateau of the [Ca2+]i increase caused by vasopressin. In the absence of external free Ca2+, glucagon and vasopressin transiently increased [Ca2+]i and stimulated the 45Ca2+ efflux from the cells, indicating mobilization of Ca2+ from internal store(s). Preincubating the cells with 0.1 nM-glucagon accelerated the rate of the fast phase of the [Ca2+]i rise caused by the subsequent addition of vasopressin. However, unlike what was observed in the presence of 1 mM-Ca2+, glucagon no longer enhanced the maximal [Ca2+]i response to vasopressin. In the absence of external free Ca2+, higher concentrations (1 nM-0.1 microM) of glucagon, which initiated larger increases in [Ca2+]i, drastically decreased the subsequent Ca2+ response to vasopressin (10 nM). At these concentrations, glucagon also decreased the vasopressin-stimulated 45Ca2+ efflux from the cells. It is suggested that, in the liver, glucagon accelerates the fast phase and elevates the plateau of the vasopressin-mediated [Ca2+]i increase respectively by releasing Ca2+ from the same internal store as that permeabilized by vasopressin, probably the endoplasmic reticulum, and potentiating the influx of extracellular Ca2+ caused by this hormone.  相似文献   

9.
Role of Ca2+ for protein turnover in isolated rat hepatocytes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Experiments with bivalent-cation chelators (EGTA and EDTA), a Ca2+ ionophore (A23187) and a Ca2+-channel blocker (verapamil) indicate that Ca2+ is required for the lysosomal degradation of endogenous protein in hepatocytes. A distinction is made between lysosomal and non-lysosomal degradation by using the lysosomotropic agent methylamine. As Ca2+ does not appear to be required for the lysosomal degradation of endocytosed asialo-fetuin, the Ca2+-dependence for the degradation of endogenous protein is probably connected with the formation of autophagic vacuoles or the fusion of autophagic vacuoles with lysosomes. EGTA and EDTA had a slight inhibitory effect on the non-lysosomal degradation. This effect could be due to the activity of non-lysosomal Ca2+-dependent thiol proteinases. Together with previous experiments with thiol-proteinase inhibitors, the present experiments indicate that these proteinases have a very limited impact on the bulk protein degradation in the isolated hepatocytes.  相似文献   

10.
In this study the Ca2+ ionophore, A23187, was used to determine the effects of disrupted Ca2+ homeostasis on cellular thiols. Isolated rat hepatocytes were incubated with varying concentrations of extracellular Ca2+ and A23187 to induce accumulation or loss of cellular Ca2+. These treatments resulted in loss of mitochondrial and cytosolic glutathione (GSH), loss of protein-thiols, and cell injury. This injury was dependent on the concentrations of ionophore and extracellular Ca2+. A correlation was found between cell injury and the loss of mitochondrial GSH, while the loss of cytosolic glutathione preceded both these events. The time course of protein-thiol loss appeared secondary to the loss of non-protein thiols. In the absence of extracellular Ca2+, the antioxidants alpha-tocopherol and diphenyl-p-phenylenediamine both totally prevented A23187-induced cell injury and loss of mitochondrial GSH, and thus protected the cells from the effects of mobilization of intracellular Ca2+. In the presence of extracellular Ca2+, cell injury as well as the loss of mitochondrial GSH were only partially prevented by antioxidant treatment. The mitochondrial Ca2+ channel blocker, ruthenium red, protected hepatocytes from A23187-induced injury in the absence of extracellular Ca2+. Leupeptin, an inhibitor of Ca2+-activated proteases, and dibucaine, a phospholipase inhibitor, did not affect cytotoxicity. Our results indicate that the level of mitochondrial GSH may be important for cell survival during ionophore-induced perturbation of cellular Ca2+ homeostasis.  相似文献   

11.
Analysis of Ca2+ fluxes and Ca2+ pools in pancreatic acini   总被引:2,自引:0,他引:2  
45Ca2+ movements have been analysed in dispersed acini prepared from rat pancreas in a quasi-steady state for 45Ca2+. Carbamyl choline (carbachol; Cch) caused a quick 45Ca2+ release that was followed by a slower 45Ca2+ 'reuptake'. Subsequent addition of atropine resulted in a further transient increase in cellular 45Ca2+. The data suggest the presence of a Cch-sensitive 'trigger' pool, which could be refilled by the antagonist, and one or more intracellular 'storage' pools. Intracellular Ca2+ sequestration was studied in isolated acini pretreated with saponin to disrupt their plasma membranes. In the presence of 45Ca2+ (1 microM), addition of ATP at 5 mM caused a rapid increase in 45Ca2+ uptake exceeding the control by fivefold. Maximal ATP-promoted Ca2+ uptake was obtained at 10 microM Ca2+ (half-maximal at 0.32 microM Ca2+). In the presence of mitochondrial inhibitors it was 0.1 microM (half-maximal at 0.014 microM). 45Ca2+ release could still be induced by Cch but the subsequent reuptake was missing. The latter was restored by ATP and atropine caused further 45Ca2+ uptake. Electron microscopy showed electron-dense precipitates in the rough endoplasmic reticulum of saponin-treated cells in the presence of Ca2+, oxalate and ATP which were absent in intact cells or cells pretreated with A23187. The data suggest the presence of a plasma membrane-bound Cch-sensitive 'trigger' Ca2+ pool and ATP-dependent Ca2+ storage systems in mitochondria and rough endoplasmic reticulum of pancreatic acini. It is assumed that Ca2+ is taken up into these pools after secretagogue-induced Ca2+ release.U  相似文献   

12.
These experiments were performed to determine the effects ofreducing Ca2+ influx(Cain) onK+ currents(IK) inmyocytes from rat small mesenteric arteries by1) adding externalCd2+ or2) lowering externalCa2+ to 0.2 mM. When measured froma holding potential (HP) of 20 mV(IK20),decreasing Cain decreasedIK at voltageswhere it was active (>0 mV). When measured from a HP of 60 mV(IK60),decreasing Cain increasedIK at voltagesbetween 30 and +20 mV but decreased IK at voltagesabove +40 mV. Difference currents(IK) weredetermined by digital subtraction of currents recorded under controlconditions from those obtained whenCain was decreased. At testvoltages up to 0 mV,IK60 exhibitedkinetics similar to controlIK60, with rapidactivation to a peak followed by slow inactivation. At 0 mV, peakIK60 averaged75 ± 13 pA (n = 8) withCd2+ and 120 ± 20 pA(n = 9) with lowCa2+ concentration. At testvoltages from 0 to +60 mV,IK60 always had an early positive peak phase, but its apparent "inactivation" increased with voltage and its steady value became negative above +20mV. At +60 mV, the initial peakIK60 averaged115 ± 18 pA with Cd2+ and 187 ± 34 pA with low Ca2+. With 10 mM pipette BAPTA, Cd2+ produced asmall inhibition ofIK20 but stillincreased IK60 between 30 and +10 mV. InCa2+-free external solution,Cd2+ only decreased bothIK20 andIK60. In thepresence of iberiotoxin (100 nM) to inhibitCa2+-activatedK+ channels(KCa),Cd2+ increasedIK60 at allvoltages positive to 30 mV while BAY K 8644 (1 µM) decreasedIK60. Theseresults suggest that Cain, through L-type Ca2+ channels and perhapsother pathways, increases KCa(i.e., IK20) and decreases voltage-dependent K+currents in this tissue. This effect could contribute to membrane depolarization and force maintenance.

  相似文献   

13.
Vasopressin stimulated gluconeogenesis from proline in hepatocytes from starved rats; this was attributed to an activation of oxoglutarate dehydrogenase (EC 1.2.4.2) [Staddon & McGivan (1984) Biochem. J. 217, 477-483]. The role of Ca2+ in the activation mechanism was investigated. (1) In the absence of extracellular Ca2+, vasopressin caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content that were markedly transient when compared with the effects in the presence of Ca2+. (2) Ca2+ added to cells stimulated for 2 min by vasopressin in the absence of extracellular Ca2+ sustained the initial effects of vasopressin. Ca2+ added 15 min after vasopressin, a time at which both the rate of gluconeogenesis and the cell oxoglutarate content were close to the control values, caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content. (3) Under conditions of cell-Ca2+ depletion, vasopressin had no effect on gluconeogenesis or cell oxoglutarate content. (4) Ionophore A23187 stimulated gluconeogenesis and caused a decrease in cell oxoglutarate content, but the phorbol ester 4 beta-phorbol 12-myristate 13-acetate had no effects. (5) These data suggest that the initial activation of oxoglutarate dehydrogenase by vasopressin is dependent on an intracellular Ca2+ pool and independent of extracellular Ca2+. For activation of a greater duration, a requirement for extracellular Ca2+ occurs. The activation of oxoglutarate dehydrogenase by A23187 is consistent with a mechanism involving Ca2+, but the lack of effect of 4 beta-phorbol 12-myristate 13-acetate indicates that protein kinase C is not involved in the mechanism of activation by vasopressin.  相似文献   

14.
Cytosolic free Ca2+ level was estimated in rat hepatocytes using the method described by Murphy et al. (1980). For control hepatocytes, a value of 0.20 +/- 0.06 mumol/l was obtained. Insulin increased cytosolic free Ca2+ level to 0.63 +2- 0.24 mumol/l. No net fluxes of Ca2+ across the plasma membrane were observed during incubation of hepatocytes with insulin. Mitochondria were shown to be the main Ca2+ buffering system. FCCP released 77-88% of releasable calcium from the cell. Dibucaine increased cytosolic free Ca2+ level to 1.16 mumol/l.  相似文献   

15.
16.
17.
Vasopressin caused a 40% inhibition of 45Ca uptake after the addition of 0.1 mM-45Ca2+ to Ca2+-deprived hepatocytes. At 1.3 mM-45Ca2+, vasopressin and ionophore A23187 each caused a 10% inhibition of 45Ca2+ uptake, whereas La3+ increased the rate of 45Ca2+ uptake by Ca2+-deprived cells. Under steady-state conditions at 1.3 mM extracellular Ca2+ (Ca2+o), vasopressin and La3+ each increased the rate of 45Ca2+ exchange. The concentrations of vasopressin that gave half-maximal stimulation of 45Ca2+ exchange and glycogen phosphorylase activity were similar. At 0.1 mM-Ca2+o, La3+ increased, but vasopressin did not alter, the rate of 45Ca2+ exchange. The results of experiments performed with EGTA or A23187 or by subcellular fractionation indicate that the Ca2+ taken up by hepatocytes in the presence of La3+ is located within the cell. The addition of 1.3 mM-Ca2+o to Ca2+-deprived cells caused increases of approx. 50% in the concentration of free Ca2+ in the cytoplasm [( Ca2+]i) and in glycogen phosphorylase activity. Much larger increases in these parameters were observed in the presence of vasopressin or ionophore A23187. In contrast with vasopressin, La3+ did not cause a detectable increase in glycogen phosphorylase activity or in [Ca2+]i. It is concluded that an increase in plasma membrane Ca2+ inflow does not by itself increase [Ca2+]i, and hence that the ability of vasopressin to maintain increased [Ca2+]i over a period of time is dependent on inhibition of the intracellular removal of Ca2+.  相似文献   

18.
Calcium (Ca2+) signals are generated across a broad time range. Kinetic considerations impact how information is processed to encode and decode Ca2+ signals, the choreography of responses that ensure specific and efficient signaling and the overall temporal amplification such that ephemeral Ca2+ signals have lasting physiological value. The reciprocal importance of timing for Ca2+ signaling, and Ca2+ signaling for timing is exemplified by the altered kinetic profiles of Ca2+ signals in certain diseases and the likely role of basal Ca2+ fluctuations in the perception of time itself.  相似文献   

19.
The properties of both Ca2+ influx and efflux in the mycelium during the life cycle of Trichoderma viride were studied by means of 45Ca2+ and by X-ray fluorescence spectroscopy measurements. The properties of the 45Ca2+ influx and effluxes indicate that they are mediated by different transport systems. The Ca2+ influx could be mediated by an electrogenic Ca2+/nH+ antiport, or by an Ca2+ uniport system. Both Ca2+ influx and efflux were stimulated by the uncouplers (and the treatment leading to the suppression of energy metabolism) and by azalomycin F, an antifungal agent. Salicylate stimulated the Ca2+ efflux, but inhibited the Ca2+ influx. In the isolated preparation of crude vacuolar/mitochondrial fraction, salicylate induced the Ca2+ release, as did A23187. Azalomycin F moderately released Ca2+ from the microsomal fraction. On the other hand, uncouplers did not release Ca2+ from the isolated organelles, but inhibited to a different extent the ATP-dependent and -independent Ca2+ influx. The results could be explained in terms of the capacitative Ca2+ influx mechanism. The rate of 45Ca2+ influx, or of the 40Ca2+ content, was maximal after about 30 h of submerged cultivation, and then decreased. The results show that loading of internal Ca2+ stores occurs in the early stages of the development of mycelium only, and the Ca2+ influx mechanism is developmentally down-regulated, being almost nonexistent during its later stages. In older mycelium, growth seems to be autonomous of the extracellular Ca2+ until the onset of conidiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号