首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—When pineal glands of 10–12-day-old chicks were organ-cultured in darkness, serotonin N-acetyltransferase activity was low during the daytime, increased at midnight and then decreased to the daytime level the next morning. The pattern of increase and decrease of enzyme activity in cultured pineal glands was comparable to the circadian rhythm of N-acetyltransferase activity in vivo. When pineal glands were kept at a low temperature for 5 h prior to culture, the phase of autonomous rhythm of enzyme activity was delayed. When chicken pineal glands were cultured during the daytime for 6 h, derivatives of adenosine 3′, 5′-monophosphate (cyclic AMP), cholera toxin, a high concentration of KCl and phosphodiesterase inhibitors increased N-acetyltransferase activity 3–7-fold, indicating an involvement of cyclic AMP in the regulation of N-acetyltransferase activity in chicken pineal gland as has been shown in rat pineal gland. When pineal glands were cultured at night in darkness, cholera toxin or a high KCl did not enhance the night-time increase of the enzyme activity. Derivatives of cyclic AMP or phosphodiesterase inhibitors enhanced the autonomous night-time increase of N-acetyltransferase activity in an additive or more than additive manner in cultured pineal glands. These observations suggest that adenylate cyclase of pinealocytes is inactive during daytime, but is activated at night in darkness, which is transduced to the synthesis of N-acetyltransferase molecules. Catecholamines suppressed the basal level and the nocturnal increase of N-acetyltransferase activity via α-adrenergic receptor. The nocturnal increase of enzyme activity was prevented by cycloheximide or actinomycin D. Cocaine, which stabilizes cell membrane potential or light exposure, blocked the nighttime increase of N-acetyltransferase activity in cultured chicken pineal glands.  相似文献   

2.
Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP(3)-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of serotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland.  相似文献   

3.
Abstract— A new method is described for the analysis of total tryptophan hydroxylation by intact tissue in culture. This method differs from classical measurements of tryptophan hydroxylase because it allows the detection of changes in tryptophan hydroxylation due to alterations in tryptophan transport, cofactor regeneration and protein synthesis. The rat pineal gland was studied. It was found to hydroxylate tryptophan linearly for a 48-h period. A direct proportional relationship between the concentration of tryptophan in the culture medium and the amount of tryptophan hydroxylated persists between 0.05 and 0.5 m m . As the medium concn of tryptophan is increased above 0.5 m m the amount of tryptophan hydroxylated decreases. Tryptophan hydroxylation is substantially inhibited by 1 m m p-chlorophenylalanine and 0.03 m m cycloheximide. No difference in the total amount of tryptophan hydroxylated was detected between male and female rat pineal glands, between chronically denervated and normal rat pineal glands, or between control glands and glands treated with 0.1-0.001 m m norepinephrine, 0.01 m m isoproterenol, or 0.01 m m mescaline.  相似文献   

4.
A second gene encoding a functional tryptophan hydroxylase activity has recently been described (TPH2), which is expressed abundantly in brainstem, the primary site of serotonergic neurons in the CNS. As serotonin (5-HT) has an important role as a precursor of the nocturnal synthesis of the pineal gland hormone, melatonin, it was of interest to determine the relative expression of TPH1 and 2 mRNA in the rat pineal during the light:dark (L:D) cycle using sensitive real-time RT-PCR assays which were developed for each TPH isoform. TPH1 mRNA expression was 105-fold more abundant in rat pineal than TPH2, and showed a significant approximately 4-fold nocturnal increase in expression which may contribute to the previously described nocturnal increase in pineal tryptophan hydroxylase activity. TPH2 expression within the gland showed no significant variation with time of day and was very low (approximately 300 copies/gland) indicating expression in the small proportion of "non-pinealocyte" cells in the gland.  相似文献   

5.
Thyroxine 5'-deiodinase was increased by isoproterenol and dibutyryl adenosine cyclic 3',5'-monophosphate in a dose- and time-related manner in cultured rat pineal gland. Basal and stimulated activity was higher in glands from hypothyroid than from euthyroid animals. Our data suggest direct beta-adrenergic stimulation of intracellular cyclic AMP may be involved in the regulation of pineal thyroxine 5'-deiodinase activity.  相似文献   

6.
Circadian Variation of Cyclic AMP in the Rat Pineal Gland   总被引:3,自引:1,他引:2  
Abstract: This study was carried out to investigate circadian variation of cyclic AMP contents in the rat pineal glands, using the high-energy microwave radiation technique. The pattern of cyclic AMP concentration in the pineal gland showed a distinct circadian variation, with the maximum level at 0200 and the lowest at 1400. The administration of propranolol completely blocked the dark-induced increase in the pineal cyclic AMP level at 0200, and the administration of isoproterenol induced a threefold, rapid increase in the cyclic AMP level at 1400, although it did not change the level at 0200.  相似文献   

7.
8.
Rat pineal glands, cultured under 95% air and 5% CO2, lost 50% of their tryptophan hydroxylase activity within 5 h. This loss was accelerated by the addition of cycloheximide or puromycin to the medium. Activity was, however, largely maintained in 95% O2 and 5% CO2. Under these conditions, L-noradrenaline (100 microM), L-isoproterenol (10 microM), and dibutyryl cyclic AMP (1 mM) induced enzyme activity. They failed to do so when 95% air and 5% CO2 was used. Noradrenaline induced serotonin N-acetyltransferase activity with either atmosphere.  相似文献   

9.
Abstract: We investigated the expression of regulatory (R) and catalytic (C) subunits of cyclic AMP-dependent protein kinase (cAK; ATP:protein phosphotransferase; EC 2.7.1.37) in the bovine pineal gland. In total RNA extracts of bovine pineal glands moderate levels of RIα/RIIβ and high levels of Cα and Cβ mRNA were found. We were able to detect a strong signal for RII and C subunit at the protein level, whereas RI was apparently absent. Probing sections of the intact bovine pineal gland with RI and RII antibodies stained only RII in pinealocytes. Pairs of cyclic AMP analogues complementing each other in activation of type II cAK, but not cAKI-directed analogue pairs, showed synergistic stimulation of melatonin synthesis. Moreover, melatonin synthesis stimulated by the physiological activator norepinephrine in pineal cell cultures was inhibited by cAK antagonists. Taken together these results show the presence of RII regulatory and both Cα and Cβ catalytic subunits and thus cAKII holoenzyme in the bovine pineal gland. The almost complete inhibition of norepinephrine-mediated melatonin synthesis by the cAK antagonists emphasizes the dominant role of cyclic AMP as the second messenger and cAK as the transducer in bovine pineal signal transduction.  相似文献   

10.
The aim of this study was to investigate the role of cyclic AMP in the regulation of tryptophan hydroxylase activity localized in retinal photoreceptor cells of Xenopus laevis, where the enzyme plays a key role in circadian melatonin biosynthesis. In photoreceptor-enriched retinas that lack serotonergic neurons, tryptophan hydroxylase activity is markedly stimulated by treatments that increase intracellular levels of cyclic AMP or activate cyclic AMP-dependent protein kinase, including forskolin, phosphodiesterase inhibitors, and cyclic AMP analogues. In contrast, cyclic AMP has no effect on tryptophan hydroxylase mRNA abundance. Experiments using cycloheximide and actinomycin D demonstrate that cyclic AMP exerts its regulatory effect via posttranslational mechanisms mediated by cyclic AMP-dependent protein kinase. The effect of cyclic AMP is independent of the phase of the photoperiod, suggesting that the nucleotide is not a mediator of the circadian rhythm of tryptophan hydroxylase. Cyclic AMP accumulation is higher in darkness than in light, as is tryptophan hydroxylase activity. Furthermore, the stimulatory effect of forskolin and that of darkness are inhibited by H89, an inhibitor of cyclic AMP-dependent protein kinase. In conclusion, cyclic AMP may mediate the acute effects of light and darkness on tryptophan hydroxylase activity of retinal photoreceptor cells.  相似文献   

11.
The role of cyclic AMP in the regulation of melatonin production was investigated in cultured Syrian hamster pineal glands. Forskolin markedly increased cyclic AMP production in pineal glands collected either late in the light period or in the dark period. The effect of forskolin was synergistically enhanced by 3-isobutylmethylxanthine, a phosphodiesterase inhibitor; however, increase in cyclic AMP after isoproterenol was only apparent in the presence of 3-isobutylmethylxanthine. Since beta-adrenergic agonists are able to stimulate melatonin production late in the dark period only, these data suggest that, in the hamster pineal gland, there may be intracellular mechanisms in addition to a cyclic AMP increase required for induction of melatonin production by beta-adrenergic agonists.  相似文献   

12.
Abstract: The effect of protein kinase A on the catalytic activity and phosphorylation of brain tryptophan hydroxylase was examined. Stimulation of endogenous protein kinase A by cyclic AMP or its analogues, dibutyryl-cyclic AMP and 8-thiomethyl-cyclic AMP, failed to activate tryptophan hydroxylase. The activation of tryptophan hydroxylase by calcium/calmodulin-phosphorylating conditions was not modified by cyclic AMP. Endogenous protein kinase A phosphorylated a large number of proteins and tryptophan hydroxylase could be identified as one substrate by sucrose gradient centrifugation, immunoprecipitation, and immunoblotting. These results indicate that tryptophan hydroxylase is phosphorylated by protein kinase A in brain and question whether this protein kinase exerts direct regulatory influence over tryptophan hydroxylase activity via phosphorylation.  相似文献   

13.
Potassium and norepinephrine stimulate the accumulation of cyclic AMP and cyclic GMP in rat pineal glands and their efflux into the medium. The efflux of both cyclic nucleotides was blocked by probenecid. The accumulation and efflux of cyclic GMP, but not of cyclic AMP, depends upon the presence of intact nerve endings and extracellular calcium. The calcium-dependent release of norepinephrine caused by veratridine was accompanied by the efflux of both cyclic AMP and cyclic GMP. In contrast, the calcium-independent release of norepinephrine caused by tyramine was accompanied by the efflux of cyclic AMP but not cyclic GMP. Changes in cyclic GMP therefore, may be related to exocytosis from the sympathetic nerve endings in the gland. High concentrations of potassium also increased tissue levels of cyclic GMP in the posterior pituitary gland. Veratridine and potassium, but not norepinephrine, stimulated the efflux of cyclic GMP from this neurosecretory gland. Thus, the relationship between cyclic GMP and exocytosis may extend beyond sympathetic nerve endings. The enhanced accumulation of cyclic GMP in the pineal gland after potassium does not appear to be mediated by extracellular (released) norepinephrine. Desmethylimipramine blocked the norepinephrine-stimulated changes in cyclic GMP, but not those caused by potassium. Investigation of the possible relationship between cyclic GMP and release of neurotransmitters is complicated by the apparent seasonal variation in the response of pineal cyclic GMP to potassium or norepinephrine.  相似文献   

14.
The first step in the biosynthesis of melatonin in the pineal gland is the hydroxylation of tryptophan to 5-hydroxytryptophan. A cDNA of human tryptophan hydroxylase (TPH) was cloned from a library of human pineal gland and expressed in Escherichia coli. This cDNA sequence is identical to the cDNA sequence published from the human carcinoid tissue [1]. This human pineal hydroxylase gene encodes a protein of 444 amino acids and a molecular mass of 51 kDa estimated for the purified enzyme. Tryptophan hydroxylase from human brainstem exhibits high sequence homology (93% identity) with the human pineal hydroxylase. The recombinant tryptophan hydroxylase exists in solution as tetramers. The expressed human pineal tryptophan hydroxylase has a specific activity of 600 nmol/min/mg when measured in the presence of tetrahydrobiopterin and L-tryptophan. The enzyme catalyzes the hydroxylation of tryptophan and phenylalanine at comparable rates. Phosphorylation of the hydroxylase by protein kinase A or calmodulin-dependent kinase II results in the incorporation of 1 mol of phosphate/mol of subunit, but this degree of phosphorylation leads to only a modest (30%) increase in BH(4)-dependent activity when assayed in the presence of 14-3-3. Rapid scanning ultraviolet spectroscopy has revealed the formation of the transient intermediate compound, 4alpha-hydroxytetrahydrobiopterin, during the hydroxylation of either tryptophan or phenylalanine catalyzed by the recombinant pineal TPH.  相似文献   

15.
The effect of acute and repeated desmethylimipramine (DMI) treatment on catecholamine-stimulated production of adenosine 3', 5'-monophosphate (cyclic AMP) in rat pineal gland was studied invivo. In rats exposed to continuous illumination, the administration of isoproterenol (2μmol/kg) to control animals produced a marked increase in the concentration of cyclic AMP in pineal gland. In contrast, norepinephrine (2μmol/kg) failed to increase the levels of cyclic AMP. After acute treatment with DMI (single injection, 38μmol/kg, i. p.), the isoproterenol-induced rise in cyclic AMP was not significantly different from that measured in control animals. However, acute DMI treatment did allow a significant elevation in the concentration of cyclic AMP in pineal gland in response to norepinephrine. In rats given nine injections of DMI (38μmol/kg, i.p., twice daily) neither isoproterenol nor norepinephrine caused a significant increase in the concentration of cyclic AMP in pineal glands. Although acute treatment with DMI had no significant effect on [3H] dihydroalprenolol binding, chronic treatment with DMI significantly reduced [3H] dihydroalprenolol binding in the pineal gland. The results of this study suggest that while a single administration of DMI can enhance adrenergic responses elicited by norepinephrine, chronic administration of DMI leads to compensatory decreases in receptor density and adrenergic responsiveness.  相似文献   

16.
The characterization and cellular localization of tryptophan hydroxylase mRNA in the human brainstem and pineal gland were investigated by using northern blot analysis and in situ hybridization histochemistry. Northern analysis of human pineal gland revealed the presence of two mRNA species that were absent in RNA isolated from human raphe. In situ hybridization experiments revealed very dense hybridization signal corresponding to tryptophan hydroxylase mRNA in cells throughout the pineal gland. In contrast, tryptophan hydroxylase mRNA was heterogeneously distributed in neurons in the dorsal and median raphe nuclei. Within the dorsal raphe, the ventrolateral and interfascicular subnuclei contained the greatest number of tryptophan hydroxylase mRNA-positive neurons. Also, the cellular concentration of tryptophan hydroxylase mRNA varied widely within the dorsal and median raphe. Comparison of the cellular concentration of tryptophan hydroxylase mRNA between the pineal gland and the raphe nuclei revealed an 11- and 46-fold greater average grain density of tryptophan hydroxylase mRNA positive cells in the pineal gland compared with the dorsal and median raphe, respectively. These findings are the first to demonstrate the cellular localization of tryptophan hydroxylase mRNA in the human brain and pineal gland as well as heterogeneity in the cellular concentration within and between these tissues.  相似文献   

17.
Abstract: The level of 35S incorporation into tryptophan hydroxylase (TPH) shows a circadian rhythm in cultured chick pineal cells. The TPH oscillation peaks in the early subjective night, persists in constant darkness, and can be phase shifted by light, in parallel to the effect of these treatments on melatonin synthesis. Using quantitative two-dimensional polyacrylamide gel electrophoresis, we have examined the regulation of TPH by agents known to affect melatonin synthesis in the chick pineal. We report here that 35S incorporation into TPH is induced by cyclic AMP and calcium, and partially inhibited by acute exposure to light. Cyclic AMP also causes a proportional increase in the radiolabeling of one of the TPH isoforms and a concomitant decrease in another isoform, possibly reflecting a change in the phosphorylation state of TPH. This effect is reversed by treatments known to reduce intracellular cyclic AMP levels in the chick pineal. Cyclic AMP thus appears to be involved in both translational and posttranslational processes regulating the expression of TPH in chick pineal cells.  相似文献   

18.
J Stoll  C A Kozak  D Goldman 《Genomics》1990,7(1):88-96
A cDNA library was constructed from RNA prepared from P815 mouse mastocytoma cells and screened for tryptophan hydroxylase. An essentially full-length clone that recognizes a major mRNA species of 1.9 kb in mastocytoma cell lines and in pineal gland, duodenum, and brainstem of the mouse was obtained. The predicted amino acid sequence of this mouse mastocytoma clone showed 97 and 87% identity, respectively, with tryptophan hydroxylase clones isolated from rat and rabbit pineal glands, but the mouse clone contains an unusual 3-amino-acid duplication near the N-terminus and lacks a phosphorylation site. A fragment of the cDNA produced an enzymatically active protein when expressed in Escherichia coli, thus demonstrating that the catalytic domain is included in the C-terminal 380 amino acids. The mouse tryptophan hydroxylase locus, termed Tph, was mapped by Southern blot analysis of somatic cell hybrids and by an interspecific backcross to a position in the proximal half of chromosome 7. Because TPH has been mapped to human chromosome 11, this assignment further defines regions of homology between these mouse and human chromosomes.  相似文献   

19.
O Pulido  G M Brown  L J Grota 《Life sciences》1983,33(11):1081-1089
The synthesis of N-acetylserotonin (NAS) in the pineal gland is dependent upon the activity of the enzymes tryptophan-hydroxylase, 1-aromatic amino acid decarboxylase and N-acetyltransferase. Pineal N-acetyltransferase activity is regulated by the level of B-adrenergic activation. N-acetylserotonin (NAS) has also been identified in extra-pineal brain tissue. In order to investigate whether extra-pineal brain NAS levels are regulated by tryptophan hydroxylase and B-adrenergic activity, the effects of tryptophan hydroxylase inhibitors (parachlorophenylalanine and 6-fluoro-tryptophan) and adrenergic drugs (l-isoproterenol and propranolol) were examined. NAS was evaluated in the cerebellum of the rat using quantitative NAS-immunohistochemistry. A significant decrease in NAS-immunofluorescence was observed after tryptophan hydroxylase inhibition. Treatment with l-isoproterenol, a B-adrenergic agonist, resulted in a significant increase in NAS-immunofluorescence intensity. This effect was blocked by propranolol, a B-adrenergic blocking agent. These data indicate that the synthesis of NAS, in the cerebellum utilizes the established serotonin pathway and that NAS synthesis in the cerebellum is regulated by a B-adrenergic mechanism similar to that in the pineal gland.  相似文献   

20.
Protein synthesis in the cultured rat pineal gland was monitored during the course of N-acetyltransferase induction by (l-isoproterenol or dibutyryl cyclic AMP. The incorporation of labeled amino acids into gland protein was essentially linear over a 6-h experimental period. Examination of the newly synthesized proteins by polyacrylamide gel electrophoresis and autoradiography did not reveal the appearance nor the disappearance of any specific protein(s) caused by (l-isoproterenol or (l)-propranolol. The lack of stimulation of synthesis of any specific protein was further demonstrated by constant ratio of incorporation in double-label experiments. Either 2μm (l)-isoproterenol or 1 mm dibutyryl cyclic AMP stimulated protein synthesis 20–40%. This increase was not due to an enhanced uptake of precursor radiolabeled amino acids by the glands when incubated with the β-agonist or cyclic AMP derivative. The stimulation of protein synthesis caused by (l)-isoproterenol was abolished by the β-antagonist (l)-propranolol. These results suggest that β-agonists may increase pineal gland protein synthesis through their relevant receptor and the generation of cyclic AMP. This increase in synthesis appears to be general and no selective elevation increase in any one band was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号