首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TNF ligand-related molecule 1A (TL1A) is a vascular endothelial growth inhibitor to reduce neovascularization. Lack of apoE a expression results in hypercholesterolemia and atherosclerosis. In this study, we determined the precise effects of TL1A on the development of atherosclerosis and the underlying mechanisms in apoE-deficient mice. After 12 weeks of pro-atherogenic high-fat diet feeding and TL1A treatment, mouse aorta, serum, and liver samples were collected and used to assess atherosclerotic lesions, fatty liver, and expression of related molecules. We found that TL1A treatment significantly reduced lesions and enhanced plaque stability. Mechanistically, TL1A inhibited formation of foam cells derived from vascular smooth muscle cells (VSMCs) but not macrophages by activating expression of ABC transporter A1 (ABCA1), ABCG1, and cholesterol efflux in a liver X receptor–dependent manner. TL1A reduced the transformation of VSMCs from contractile phenotype into synthetic phenotypes by activating expression of contractile marker α smooth muscle actin and inhibiting expression of synthetic marker osteopontin, or osteoblast-like phenotype by reducing calcification. In addition, TL1A ameliorated high-fat diet–induced lipid metabolic disorders in the liver. Taken together, our work shows that TL1A can inhibit the development of atherosclerosis by regulating VSMC/foam cell formation and switch of VSMC phenotypes and suggests further investigation of its potential for atherosclerosis treatment.  相似文献   

2.
Vascular interstitial cells (VICs) are non‐contractile cells with filopodia previously described in healthy blood vessels of rodents and their function remains unknown. The objective of this study was to identify VICs in human arteries and to ascertain their role. VICs were identified in the wall of human gastro‐omental arteries using transmission electron microscopy. Isolated VICs showed ability to form new and elongate existing filopodia and actively change body shape. Most importantly sprouting VICs were also observed in cell dispersal. RT‐PCR performed on separately collected contractile vascular smooth muscle cells (VSMCs) and VICs showed that both cell types expressed the gene for smooth muscle myosin heavy chain (SM‐MHC). Immunofluorescent labelling showed that both VSMCs and VICs had similar fluorescence for SM‐MHC and αSM‐actin, VICs, however, had significantly lower fluorescence for smoothelin, myosin light chain kinase, h‐calponin and SM22α. It was also found that VICs do not have cytoskeleton as rigid as in contractile VSMCs. VICs express number of VSMC‐specific proteins and display features of phenotypically modulated VSMCs with increased migratory abilities. VICs, therefore represent resident phenotypically modulated VSMCs that are present in human arteries under normal physiological conditions.  相似文献   

3.
4.
目的:本研究运用差异显示技术研究动脉血管平滑肌细胞在钙化过程中基因表达的改变,探讨与动脉钙化相关的基因.方法:体外培养牛主动脉平滑肌细胞,在培养环境中加入10 mmol/L的β-磷酸甘油酯,诱导细胞钙化,作为动脉钙化模型,分别提取对照细胞和钙化细胞的总RNA,用荧光标记的引物进行DD-PCR扩增,电泳显示差异表达的cDNA,再用反向Northern blot对这些差异cDNA进行鉴定确认,并对确认的差异cDNA片段进行克隆测序.结果:DD-PCR显示65个表达差异的片段,经过回收、扩增和反向Northern blot有7个片断确定有持续的差异表达.经过测序和同源性比较,发现有3个片段为新的基因片段.结论:初步确定7个与血管钙化相关的cDNA片段,其中3个片段为新的未知基因片段.  相似文献   

5.
6.
Vascular smooth muscle cell (SMC) switching between differentiated and dedifferentiated phenotypes is reversible and accompanied by morphological and functional alterations that require reconfiguration of cell-cell and cell-matrix adhesion networks. Studies attempting to explore changes in overall composition of the adhesion nexus during SMC phenotype transition are lacking. We have previously demonstrated that T-cadherin knockdown enforces SMC differentiation, whereas T-cadherin upregulation promotes SMC dedifferentiation. This study used human aortic SMCs ectopically modified with respect to T-cadherin expression to characterize phenotype-associated cell-matrix adhesion molecule expression, focal adhesions configuration and migration modes. Compared with dedifferentiated/migratory SMCs (expressing T-cadherin), the differentiated/contractile SMCs (T-cadherin-deficient) exhibited increased adhesion to several extracellular matrix substrata, decreased expression of several integrins, matrix metalloproteinases and collagens, and also distinct focal adhesion, adherens junction and intracellular tension network configurations. Differentiated and dedifferentiated phenotypes displayed distinct migrational velocity and directional persistence. The restricted migration efficiency of the differentiated phenotype was fully overcome by reducing actin polymerization with ROCK inhibitor Y-27632 whereas myosin II inhibitor blebbistatin was less effective. Migration efficiency of the dedifferentiated phenotype was diminished by promoting actin polymerization with lysophosphatidic acid. These findings held true in both 2D-monolayer and 3D-spheroid migration models. Thus, our data suggest that despite global differences in the cell adhesion nexus of the differentiated and dedifferentiated phenotypes, structural actin cytoskeleton characteristics per se play a crucial role in permissive regulation of cell-matrix adhesive interactions and cell migration behavior during T-cadherin-induced SMC phenotype transition.  相似文献   

7.
We developed a new separation method for isolating placental vascular smooth muscle cells (PVSMCs) from a rat in this study. Our method used the magnetic force between a magnet and ferrous ferric oxide (Fe3O 4) to make the separation and extraction processes easier and more efficient. From the first to sixth generation, the cells isolated using this protocol were identified as smooth muscle cells (SMCs) by their immunoreactivity to the SMC markers and by the “hill and valley” morphology. PVSMCs were exposed to angiotensin II (1 μmol/L) and resulted in sharply increased intracellular Ca 2+ concentration. Furthermore, activation of protein kinase C (PKC) increased concomitantly with a decrease in calponin expression. These results indicate that the isolated cells had biological activity. Our method of isolating PVSMCs from rat leads to isolation of cultured cells with activity and high purity. The approach will be useful in research studies on placental vascular diseases.  相似文献   

8.
平滑肌细胞(vascular smooth muscle cell,VSMC)的迁移对血管发育、动脉粥样硬化和术后再狭窄等起到关键性的作用。主要从激发VSMC迁移的关键炎性细胞因子、细胞间相互作用的核心成员、microRNA、细胞骨架和上述各因素的迁移信号通路这几方面来综述VSMC的迁移。  相似文献   

9.
Summary Studies of bovine carotid artery smooth muscle cells, during long-term in vitro subcultivation (up to 100 population doublings), have revealed phenotypic heterogeneity among cells, as characterized by differences in proliferative behavoir, cell morphology, and contractile-cytoskeletal protein profiles. In vivo, smooth muscle cells were spindle-shaped and expressed desmin and alpha-smooth muscle actin (50% of total actin) as their predominant cytoskeletal and contractile proteins. Within 24 h of culture, vimentin rather than desmin was the predominant intermediate filament protein, with little change in alpha-actin content. Upon initial subcultivation, all cells were flattened and fibroblastic in appearance with a concommitant fivefold reduction in alpha-actin content, whereas the beta and gamma nonmuscle actins predominated. In three out of four cell lines studied, fluctuations in proliferative activity were observed during the life span of the culture. These spontaneous fluctuations in proliferation were accompanied by coordinated changes in morphology and contractile-cytoskeletal protein profiles. During periods of enhanced proliferation a significant proportion of cells reverted to their original spindle-shaped morphology with a simultaneous increase in alpha-actin content (20 to 30% of total actin). These results suggest that in long-term culture smooth muscle cells undergo spontaneous modulations in cell phenotype and may serve as a useful model for studying the regulation of intracellular protein expression. This work was supported by grants from from National Institutes of Health, Bethesda, MD, to DMW (HL35684), JW (HL36412), and JM and RL (SCOR HL 14212).  相似文献   

10.
11.
Summary To study mechanisms controlling growth and phenotype in human vascular smooth muscle cells, we established culture conditions under which these cells proliferate rapidly and achieve life-spans of 50–60 population doublings. In medium containing heparin and heparin-binding growth factors, growth rate and life-span of human vascular smooth muscle cells increased more than 50% relative to cultures with neither supplement, and more than 20% compared to cultures supplemented only with heparin-binding growth factors. In contrast to observations made in rat vascular smooth muscle cells, smooth muscle-specific α-actin in the human cells was expressed only in the presence of heparin and colocalized with β/γ nonmuscle actins in stress fibers, not in adhesion plaques. Heparin, in the presence of heparin-binding growth factors, also caused more than 170% stimulation of tracer glucosamine incorporation into hyaluronic acid and a 7.5-fold increase in hyaluronic acid accumulation. In comparison, total sulfate incorporation into sulfated glycosaminoglycans increased by less than 40%. In light of our previous findings that heparin suppresses collagen gene expression, we conclude that heparin induces human vascular smooth muscle cells exposed to heparin-binding growth factors to remodel their extracellular matrix by altering the relative rates of hyaluronic acid (HA) and collagen synthesis. The resulting hyaluronic-acid-rich, collagen-poor matrix may enhance infiltration of CD44/hyaluronate-receptor-bearing T-lymphocytes and monocytes into the vascular wall, an early event in atherogenesis.  相似文献   

12.
The migration and proliferation of vascular smooth muscle cells (VSMCs) are essential elements during the development of atherosclerosis and restenosis. An increasing number of studies have reported that extracellular matrix (ECM) proteins, including the CCN protein family, play a significant role in VSMC migration and proliferation. CCN4 is a member of the CCN protein family, which controls cell development and survival in multiple systems of the body. Here, we sought to determine whether CCN4 is involved in VSMC migration and proliferation. We examined the effect of CCN4 using rat cultured VSMCs. In cultured VSMCs, CCN4 stimulated the adhesion and migration of VSMCs in a dose-dependent manner, and this effect was blocked by an antibody for integrin α5β1. CCN4 expression was enhanced by the pro-inflammatory cytokine tumor necrosis factor α (TNF-α). Furthermore, knockdown of CCN4 by siRNA significantly inhibited the VSMC proliferation. CCN4 also could up-regulate the expression level of marker proteins of the VSMCs phenotype. Taken together, these results suggest that CCN4 is involved in the migration and proliferation of VSMCs. Inhibition of CCN4 may provide a promising strategy for the prevention of restenosis after vascular interventions.  相似文献   

13.
为寻找对血管平滑肌细胞异常增殖有较强抑制作用的化合物,用MMT法考察新型大豆苷元磺酸酯体外抑制血管平滑肌细胞增殖活性.结果表明:该大豆苷元磺酸酯对血管平滑肌细胞增殖在10-6 mol/L时有抑制作用(P<0.05),该浓度下的抑制率为64.62%,与先导化合物大豆苷元相比活性提高约100倍.构效关系研究表明,大豆苷元经...  相似文献   

14.
15.
目的:探讨瑞舒伐他汀(Rsv)对同型半胱氨酸(Hcy)诱导的小鼠血管平滑肌细胞(VSMCs)去分化及内质网应激(ERS)的影响。方法:Hcy和不同浓度瑞舒伐他汀(0.1,1.0,10 μmol/L)干预VSMCs,48 h后检测细胞骨架及表型蛋白(α-SMA)、钙调节蛋白(calponin)和骨桥蛋白(OPN)变化,并检测ERS相关mRNA (Herpud1,XBP1s和GRP78)在不同时间点的水平;再在Hcy及Rsv干预基础上给予ERS抑制剂4-苯基丁酸(4-PBA)或诱导剂衣霉素来调控细胞ERS水平,检测细胞增殖、迁移和表型蛋白表达,明确ERS在Rsv表型保护中的作用;在Hcy及Rsv干预基础上给予雷帕霉素靶蛋白(mTOR)-P70S6激酶(P70S6K)信号抑制剂雷帕霉素或激活剂磷脂酸,检测mTOR-P70S6K磷酸化和ERS水平,明确mTOR-P70S6通路在Rsv调控ERS中的作用。结果:与Hcy组相比,Hcy+中Rsv组(1 μmol/L)和Hcy+高Rsv组(10 μmol/L)细胞骨架极性明显增强,α-SMA、calponin表达升高,而OPN及ERS相关mRNA水平显著降低(P<0.01);与Hcy组比较,Hcy+Rsv组和Hcy+4-PBA组增殖、迁移水平降低(P<0.01),收缩蛋白表达增强,但衣霉素干预则逆转了Rsv的上述作用;与Hcy组相比,Hcy+Rsv组和Hcy+雷帕霉素组的mTOR-P70S6K磷酸化及ERS水平降低(P<0.01),但磷脂酸干预抑制了Rsv对mTOR-P70S6K通路和ERS的影响。结论:瑞舒伐他汀可能通过mTOR-P70S6K通路抑制ERS水平,抑制Hcy诱导的小鼠VSMCs去分化改变。  相似文献   

16.
Diet can be one of the most important factors that influence risks for cardiovascular diseases. Hesperetin, a flavonoid present in grapefruits and oranges, is one candidate that may benefit the cardiovascular system. In this study, we have investigated the effect of hesperetin on the platelet-derived growth factor (PDGF)-BB-induced proliferation of primary cultured rat aortic vascular smooth muscle cells (VSMCs). Hesperetin significantly inhibited 50 ng/ml PDGF-BB-induced rat aortic VSMCs proliferation and [(3)H]-thymidine incorporation into DNA at concentrations of 5, 25, 50, and 100 microM. In accordance with these findings, hesperetin revealed blocking of the PDGF-BB-inducible progression through G(0)/G(1) to S phase of the cell cycle in synchronized cells. Western blot showed that hesperetin inhibited not only phosphorylation of retinoblastoma protein (pRb) and expressions of cyclin A, cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2) as well as proliferating cell nuclear antigen (PCNA) protein, but also downregulation of cyclin-dependent kinase inhibitor (CKI) p27(kip1), while did not affect CKI p21(cip1), p16(INK4), p53, and CDK4 expressions as well as early signaling transductions such as PDGF beta-receptor, extracellular signal-regulated kinase (ERK) 1/2, Akt, p38, and JNK phosphorylation. These results suggest that hesperetin inhibits PDGF-BB-induced rat aortic VSMCs proliferation via G(0)/G(1) arrest in association with modulation of the expression or activation of cell-cycle regulatory proteins, which may contribute to the beneficial effect of grapefruits and oranges on cardiovascular system.  相似文献   

17.
Summary Human arterial smooth muscle cells (hASMC) from explants of the inner media of uterine arteries were studied in secondary culture. We had previously found that these cells depend on exogenous platelet-derived growth factor (PDGF) for proliferation in vitro. Deprivation of the serum mitogen(s) by culture in plasma-derived serum or bovine serum albumin (BSA) caused a true growth arrest that was reversible upon reexposure to the mitogen(s). When added to serum-containing medium, heparin caused a reversible growth arrest which could be competed for by increasing concentrations of serum. In the current study we used a set of smooth muscle-specific actin and myosin, antibodies to study the expression of contractile proteins in stress fibers under indirect immunofluorescence on hASMC in culture. Even in sparse culture, grwoth-arrested hASMC expressed stress fibers containing these actin and myosin epitopes. This was true irrespective of whether growth arrest was achieved by culture in media containing only BSA or a combination of heparin and whole blood serum. hASMC proliferating in whole blood serum in sparse culture did not express such strees fibers, as judged by immunofluorescent staining. This was true also for cells that were restimulated to proliferate in serum after a growth arrest. Utilizing a monoclonal antibody against a nuclear antigen expressed in proliferating human cells, we were able to demonstrate an inverse relationship between the expression of this antigen and the SMC-specific contractile proteins, respectively. Under these culture conditions, the reversible transition between defifferentiated and differentiated hASMC was almost complete and terminated about 1 wk after the change in culture condition. We conclude that hASMC in vitro respond, to exogenous PDGF by proliferation and dedifferetiation as a single population of cells. We also conclude that this modulation is reversible, because the cells become uniformly quiescent and differentiated when the mitogenic stimulus is blocked or removed. This study was supported by grants from the Swedish Medical Research Council (Project no. 4531 and 6816), the Swedish Association against Heart and Chest Diseases, the King Gustaf V and Queen Victoria Foundation, the National Institutes of Health, Bethesda, MD (grant HL 29873) and the Swedish National Board for Laboratory Animals.  相似文献   

18.
19.
血管平滑肌细胞(vascular smooth muscle cells,VSMCs)的发育与血管壁的构建是目前相关领域中的重要学科前沿.国内外同行的工作多集中在血管发育初始阶段内皮细胞及其前体细胞在血管新生中的作用、调节因素及生物学机制.VSMCs参与血管壁早期构建,特别是VSMCs的募集与分化机制已经成为血管新生研究中的一个新领域. 本期发表的《 抑制Rac1蛋白活化阻碍胚胎发育早期血管新生 》(见696~701页)报道了韩雅玲教授及其合作者在这一领域取得的最新研究结果.Rac1是真核细胞内重要的一类信号传递分子,在细胞信号传递过程中发挥分子开关作用.他们采用胚胎干细胞(ESCs)为模型,建立稳定表达持续型Rac1和显性失活型Rac1编码序列的小鼠ESCs并制备胚胎小体,诱导分化后观察其对内皮细胞分化和迁移的影响,发现抑制Rac1可以干扰血管内皮细胞连接成血管网状结构,细胞骨架F-actin排列紊乱,细胞的迁移受到明显抑制,表明Rac1在胚胎早期血管发育过程中与内皮细胞的迁移有关[1]. 近年来,韩雅玲教授及其研究集体在VSMCs发育与血管构建、胚胎干细胞来源的拟胚体血管平滑肌发育与血管新生机制以及胚胎主动脉VSMCs起源等方面开展了研究,取得了一系列有价值的成果[2~11],可能为闭塞性和增生性血管病的发生及防治提供理论依据和候选基因.详见“相关链接”.  相似文献   

20.
Vascular smooth muscle cells (VSMCs) are highly specialized cells that regulate vascular tone and participate in vessel remodeling in physiological and pathological conditions. It is unclear why certain vascular pathologies involve one type of vessel and spare others. Our objective was to compare the proteomes of normal human VSMC from aorta (human aortic smooth muscle cells, HAoSMC), umbilical artery (human umbilical artery smooth muscle cells, HUASMC), pulmonary artery (HPASMC), or pulmonary artery VSMC from patients with pulmonary arterial hypertension (PAH‐SMC). Proteomes of VSMC were compared by 2D DIGE and MS. Only 19 proteins were differentially expressed between HAoSMC and HPASMC while 132 and 124 were differentially expressed between HUASMC and HAoSMC or HPASMC, respectively (fold change 1.5≤ or ?1.5≥, p < 0.05). As much as 336 proteins were differentially expressed between HPASMC and PAH‐SMC (fold change 1.5≤ or ?1.5≥, p < 0.05). HUASMC expressed increased amount of α‐smooth muscle actin compared to either HPASMC or HAoSMC (although not statistically significant). In addition, PAH‐SMC expressed decreased amount of smooth muscle myosin heavy chain and proliferation rate was increased compared to HPASMC thus supporting that PAH‐SMC have a more synthetic phenotype. Analysis with Ingenuity identified paxillin and (embryonic lethal, abnormal vision, drosophila) like 1 (ELAVL1) as molecules linked with a lot of proteins differentially expressed between HPASMC and PAH‐SMC. There was a trend toward reduced proliferation of PAH‐SMC with paxillin‐si‐RNA and increased proliferation with ELAVL1‐siRNA. Thus, VSMCs have very diverse protein content depending on their origin and this is in link with phenotypic differentiation. Paxillin targeting may be a promising treatment of PAH. ELAVL1 also participate in the regulation of PAH‐SMC proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号