首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Urea movement across plasmamembranes is modulated by specialized transporter proteins that areproducts of two genes, termed UT-A and UT-B. These proteins play keyroles in the urinary concentrating mechanism and fluid homeostasis. Wehave isolated and characterized a 1.4-kb cDNA from testes encoding anew isoform (UT-A5) belonging to the UT-A transporter family. Forcomparison, we also isolated a 2.0-kb cDNA from mouse kidneyinner medulla encoding the mouse UT-A3 homologue. The UT-A5 cDNAhas a putative open reading frame encoding a 323-amino acidprotein, making UT-A5 the smallest UT-A family member in terms ofmolecular size. Its putative topology is of particular interest,because it calls into question earlier models of UT-A transporterstructure. Expression of UT-A5 cRNA in Xenopus oocytesmediates phloretin-inhibitable urea uptake and does not translocatewater. The distribution of UT-A5 mRNA is restricted to the peritubularmyoid cells forming the outermost layer of the seminiferous tubuleswithin the testes and is not detected in kidney. UT-A5 mRNA levels arecoordinated with the stage of testes development and increase 15 dayspostpartum, commensurate with the start of seminiferous tubule fluid movement.

  相似文献   

2.
3.
4.
5.
The gap junction proteins, connexins (Cxs), are present in the testis, and among them, Cx43 play an essential role in spermatogenesis. In the present study, we investigated the testicular expression and regulation of another Cx, Cx33, previously described as a negative regulator of gap junction communication. Cx33 mRNA was present in testis and undetectable in heart, liver, ovary, and uterus. In the mature testis, Cx33 was specifically immunolocalized in the basal compartment of the seminiferous tubules, whereas Cx43 was present in both seminiferous tubule and interstitial compartments. During stages IX and X of spermatogenesis, characterized by Sertoli cell phagocytosis of residual bodies, Cx43 was poorly expressed within seminiferous tubules, while Cx33 signal was strong. To evaluate the role of phagocytosis in the control of Cx33 and Cx43 expression, the effect of LPS was analyzed in the Sertoli cell line 42GPA9. We show herein that phagocytosis activation by LPS concomitantly stimulated Cx33 and inhibited Cx43 mRNA levels. These effects appear to have been mediated through IL-1, because the exposure of Sertoli cells to the IL-1 receptor antagonist partly reversed these effects. IL-1 enhanced and reduced, respectively, the levels of Cx33 and Cx43 mRNA in a time- and dose-dependent manner. These data reveal that Cx33 and Cx43 genes are controlled differently within the testis and suggest that these two Cxs may exert opposite and complementary effects on spermatogenesis. Sertoli cell; germ cell proliferation  相似文献   

6.
In this study, we investigated the expression of TR4 in different stages of seminiferous tubules and the relationship between TR4 and androgen in rat testis. We found that TR4 was stage-dependently expressed in rat seminiferous tubules, T withdrawal induced by high doses of testosterone undecanoate and ethane dimethane sulfonate inhibit TR4 expression in rat testis, and testosterone induced TR4 expression in co-cultured primary germ/Sertoli cells. Furthermore, we demonstrated that androgen receptor could enhance TR4-mediated transactivation activity in testis cells in the presence of testosterone. Together, these data indicate that the expression of TR4 in rat testis is stage dependent and androgen inductive, and suggest the important role of orphan receptor TR4 in spermatogenesis.  相似文献   

7.
This review centers around studies which have used ethane dimethane sulphonate (EDS) selectively to destroy all of the Leydig cells in the adult rat testis. With additional manipulations such as testosterone replacement and/or experimental induction of severe seminiferous tubule damage in EDS-injected rats, the following questions have been addressed: 1) What are the roles and relative importance of testosterone and other non-androgenic Leydig cell products in normal spermatogenesis and testicular function in general? 2) What are the factors controlling Leydig cell proliferation and maturation? 3) Is it the Leydig cells or the seminiferous tubules (or both) which control the testicular vasculature? The findings emphasize that in the normal adult rat testis there is a complex interaction between the Leydig cells, the Sertoli (and/or peritubular) cells, the germ cells, and the vasculature, and that testosterone, but not other Leydig cell products, plays a central role in many of these interactions. The Leydig cells drive spermatogenesis via the secretion of testosterone which acts on the Sertoli and/or peritubular cells to create an environment which enables normal progression of germ cells through stage VII of the spermatogenic cycle. In addition, testosterone is involved in the control of the vasculature, and hence the formation of testicular interstitial fluid, presumably again via effects on the Sertoli and/or peritubular cells. When Leydig cells regenerate and mature after their destruction by EDS, it can be shown that both the rate and the location of regenerating Leydig cells is determined by an interplay between endocrine (LH and perhaps FSH) and paracrine factors; the latter emanate from the seminiferous tubules and are determined by the germ cell complement. Taken together with other data on the paracrine control of Leydig cell testosterone secretion by the seminiferous tubules, these findings demonstrate that the functions of all of the cell types in the testis are interwoven in a highly organized manner. This has considerable implications with regard to the concentration of research effort on in vitro studies of the testis, and is discussed together with the need for a multidisciplinary approach if the complex control of spermatogenesis is ever to be properly understood.  相似文献   

8.
We describe here morphological and functional analyses of the spermatogenic process in sexually mature white-lipped peccaries. Ten sexually mature male animals, weighing approximately 39 kg were studied. Characteristics investigated included the gonadosomatic index (GSI), relative frequency of stages of the cycle of seminiferous epithelium (CSE), cell populations present in the seminiferous epithelium in stage 1 of CSE, intrinsic rate of spermatogenesis, Sertoli cell index, height of seminiferous epithelium and diameter of seminiferous tubules, volumetric proportion of components of the testicular parenchyma and length of seminiferous tubules per testis and per gram of testis. The GSI was 0.19%, relative frequencies of pre-meiotic, meiotic and post-meiotic phases were, respectively 43.6%, 13.8% and 42.6%, general rate of spermatogenesis was 25.8, each Sertoli cell supported an average 18.4 germinative cells, height of seminiferous epithelium and diameter of seminiferous tubules were, respectively, 78.4 microm and 225.6 microm, testicular parenchyma was composed by 75.8% seminiferous tubules and 24.2% intertubular tissue, and length of seminiferous tubules per gram of testis was 15.8m. These results show that, except for overall rate of spermatogenesis, the spermatogenic process in white-lipped peccaries is very similar to that of collared peccaries, and that Sertoli cells have a greater capacity to support germinative cells than most domestic mammals.  相似文献   

9.
The finding of large, stage-specific changes in secretion of procathepsin L by rat Sertoli cells has led to the hypothesis that this proenzyme promotes the survival, replication, or differentiation of spermatogenic cells. Experiments described herein used a mouse model to test this hypothesis. To prove that mice are appropriate for this purpose, we first demonstrate that mature mouse Sertoli cells express cathepsin L mRNA in the same stage-specific manner as rat Sertoli cells and they also secrete procathepsin L. To test whether catalytically active cathepsin L is required for normal spermatogenesis, we examined the testes of 110- to 120-day-old furless mice, which express catalytically inactive cathepsin L. Morphologic examination of testes of furless mice revealed both normal and atrophic seminiferous tubules. Enumeration of atrophic tubules in furless and control mice demonstrates that lack of functional cathepsin L results in a 12-fold increase in seminiferous tubule atrophy. To determine whether lack of functional cathepsin L affects the production of male germ cells in apparently normal, nonatrophic tubules, we compared numbers in control and furless mice of preleptotene spermatocytes, pachytene spermatocytes, and round spermatids per Sertoli cell. Results demonstrate that the lack of functional cathepsin L causes a 16% reduction in formation of preleptotene spermatocytes and a 25% reduction in differentiation of these cells into pachytene spermatocyte. These results suggest that procathepsin L either directly or indirectly has two distinct functions in the testis. This proenzyme prevents atrophy of seminiferous tubules and promotes the formation of preleptotene spermatocytes and the differentiation of these meiotic cells into pachytene spermatocytes.  相似文献   

10.
11.
12.
The testis consists of two types of tissues, the interstitial tissue and the seminiferous tubule, which have different functions and are assumed to have different nutritional metabolism. The localization of enzymes of the mitochondrial fatty acid β-oxidation system in the testis was investigated to obtain a better understanding of nutrient metabolism in the testis. Adult rat testis tissues were subjected to immunoblot analysis for quantitation of the amounts of enzyme proteins, to DNA microarray analysis for gene expression, and to immunofluorescence and immunoelectron microscopy for localization. Quantitative analysis by immunoblot and DNA microarray revealed that enzymes occur abundantly in Leydig cells in the interstitial tissue but much less so in the seminiferous tubules. Immunohistochemistry revealed that Leydig cells in the interstitial tissue and Sertoli cells in the seminiferous tubules contain a full set of mitochondrial fatty acid β-oxidation enzymes in relatively plentiful amounts among the cells in the testis, but that this is not so in spermatogenic cells. This characteristic localization of the mitochondrial fatty acid β-oxidation system in the testis needs further elucidation in terms of a possible role for it in the nutritional metabolism of spermatogenesis. (J Histochem Cytochem 58:195–206, 2010)  相似文献   

13.
14.
During spermatogenesis, the blood-testis barrier (BTB) segregates the adluminal (apical) and basal compartments in the seminiferous epithelium, thereby creating a privileged adluminal environment that allows post-meiotic spermatid development to proceed without interference of the host immune system. A key feature of the BTB is its continuous remodeling within the Sertoli cells, the major somatic component of the seminiferous epithelium. This remodeling is necessary to allow the transport of germ cells towards the seminiferous tubule interior, while maintaining intact barrier properties. Here we demonstrate that the actin nucleation promoting factor Neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) provides an essential function necessary for BTB restructuring, and for maintaining spermatogenesis. Our data suggests that the N-WASP-Arp2/3 actin polymerization machinery generates branched-actin arrays at an advanced stage of BTB remodeling. These arrays are proposed to mediate the restructuring process through endocytic recycling of BTB components. Disruption of N-WASP in Sertoli cells results in major structural abnormalities to the BTB, including mis-localization of critical junctional and cytoskeletal elements, and leads to disruption of barrier function. These impairments result in a complete arrest of spermatogenesis, underscoring the critical involvement of the somatic compartment of the seminiferous tubules in germ cell maturation.  相似文献   

15.
Cryptorchidism was simulated in 13-15-day-old rats by severing the gubernaculum testis and fixing the testis to the abdominal wall. Ultrastructural examination of the testis was made 100 days after birth when a number of modifications to the seminiferous tubules were noted. Germ cells were scanty, with only occasional spermatogonia and primary spermatocytes persisting. The nuclei of Sertoli cells were regular and oval or indented in shape. Their cytoplasm was characterized by a rich smooth endoplasmic reticulum, lipid inclusions and mitochondria with tubulo-vesicular cristae indicative of stero?dogenic activity. The decrease in the number of the germ cells induced a membrane rearrangement with numerous tight junctions and interdigitations between the Sertoli cells. Sertoli cell-specific junctional complexes were very extensive. The lamina propria of the seminiferous tubule appeared thickened and folded and the multilayered basal lamina had complex folds. After fixation with glutaraldehyde containing lanthanum, the latter substance was identified in the basal intercellular spaces of the seminiferous tubules indicating that the blood-testis barrier remains functional in the intra-abdominal testis.  相似文献   

16.
17.
18.
There is evidence for the existence of a barrier between the blood and the lumina of the seminiferous tubules, from the uneven coloration of the testis after injection of some dyes, from the distribution of some radioactive markers, from the composition of the fluids from the rete testis and the seminiferous tubules, from the rate of penetration of various substances into these fluids, and from the presence of specialized junctions between the Sertoli cells, which block the penetration of lanthanum and other electron-opaque markers into the tubules. This barrier develops only at the time of puberty. However, the endothelial cells in the testis share certain characteristics with the endothelial cells of the brain, which form the blood-brain barrier. Also, the peritubular tissue has a specific transport system for urea, and these two tissues may also regulate the entry of substances into the testis. The barrier remains effective in some circumstances where spermatogenesis is disrupted, but it is less effective outside the breeding season in seasonal breeders. There are also some treatments which break down the barrier and disrupt spermatogenesis. Spermatogonia injected into the rete must pass through the barrier to re-establish spermatogenesis in infertile testes, but leukaemic cells injected into the rete can also pass from the lumen of the tubules into the interstitium, where the disease then recurs.  相似文献   

19.
A 3.4 kilobase cDNA complementary to rat transferrin receptor mRNA has been isolated from an adult rat testis cDNA library. The rat transferrin receptor nucleotide sequence was shown to be 82% similar to the human transferrin receptor sequence over the amino acid coding region and over 90% similar in the sequences known to be responsible for iron regulation in the human mRNA. The mRNA was shown by Northern blot analysis to be regulated by iron levels in Sertoli cells in culture. Iron depletion resulted in at least a 5-fold increase in receptor message in Sertoli cells, as well as in an actively growing testicular cell line (S10-7). The level of transferrin receptor mRNA in cultured Sertoli cells was not influenced by hormones; however, chronic administration of testosterone or FSH to hypophysectomized rats resulted in increased transferrin receptor mRNA levels in the testis. Northern blot analysis of mRNAs from testes of rats synchronized at various stages of the cycle of the seminiferous epithelium showed that transferrin receptor mRNA was differentially regulated throughout the cycle. Northern blots of mRNA from germinal cell populations derived from synchronized tests showed that the message was regulated in the nongerminal cell components of the tubule, most likely the Sertoli cell. The comparison of transferrin receptor mRNA levels in normal testes and testes from hypophysectomized rats, as well as in isolated germinal cells and cultured Sertoli cells, suggested that transferrin receptor mRNA levels were considerably higher in Sertoli cells than in other cell types of the seminiferous tubules.  相似文献   

20.
Some males of a mutant strain of King-Holtzman rats exhibit an anomalous heritable defect manifested as either unilateral or bilateral ectopic testes. In the adult, these testes contain seemingly immature Sertoli and Leydig cells, seminiferous tubules greatly reduced in diameter, and exhibit arrested spermatogenesis. Thus, the affected testis is essentially sterile. An inability to produce normal amounts of testosterone and androstenedione by these gonads is probably a reflection of changes that have been effected in their Leydig cells. Thus, this study suggests that abnormal function of the Leydig and Sertoli cells and seminiferous tubule failure in these mutant animals result from the physiologically cryptorchid condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号