首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this report, we focused on Pax3 and Pax7 expression in vitro during myoblast differentiation and in vivo during skeletal muscle regeneration. We showed that Pax3 and Pax7 were present in EDL (extensor digitorum longus) and Soleus muscle derived cells. These cells express in vitro a similar level of Pax3 mRNA, however, differ in the levels of mRNA encoding Pax7. Analysis of Pax3 and Pax7 proteins showed that Soleus and EDL satellite cells differ in the level of Pax3/7 proteins and also in the number of Pax3/7 positive cells. Moreover, Pax3/7 expression was restricted to undifferentiated cells, and both proteins were absent at further stages of myoblast differentiation, indicating that Pax3 and Pax7 are down-regulated during myoblast differentiation. However, we noted that the population of undifferentiated Pax3/7 positive cells was constantly present in both in vitro cultured satellite cells of EDL and Soleus. In contrast, there was no significant difference in Pax3 and Pax7 during in vivo differentiation accompanying regeneration of EDL and Soleus muscle. We demonstrated that Pax3 and Pax7, both in vitro and in vivo, participated in the differentiation and regeneration events of muscle and detected differences in the Pax7 expression pattern during in vitro differentiation of myoblasts isolated from fast and slow muscles.  相似文献   

3.
4.
How morphological diversity arises through evolution of gene sequence is a major question in biology. In Drosophila, the genetic basis for body patterning and morphological segmentation has been studied intensively. It is clear that some of the genes in the Drosophila segmentation program are functioning similarly in certain other taxa, although many questions remain about when these gene functions arose and which taxa use these genes similarly to establish diverse body plans. Tardigrades are an outgroup to arthropods in the Ecdysozoa and, as such, can provide insight into how gene functions have evolved among the arthropods and their close relatives. We developed immunostaining methods for tardigrade embryos, and we used cross-reactive antibodies to investigate the expression of homologs of the pair-rule gene paired (Pax3/7) and the segment polarity gene engrailed in the tardigrade Hypsibius dujardini. We find that in H. dujardini embryos, Pax3/7 protein localizes not in a pair-rule pattern but in a segmentally iterated pattern, after the segments are established, in regions of the embryo where neurons later arise. Engrailed protein localizes in the posterior ectoderm of each segment before ectodermal segmentation is apparent. Together with previous results from others, our data support the conclusions that the pair-rule function of Pax3/7 is specific to the arthropods, that some of the ancient functions of Pax3/7 and Engrailed in ancestral bilaterians may have been in neurogenesis, and that Engrailed may have a function in establishing morphological boundaries between segments that is conserved at least among the Panarthropoda. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
Wnt and Sonic Hedgehog (Shh) signals are known to pattern the somite into dermomyotomal, myotomal and sclerotomal cell fates. By employing explants of presomitic mesoderm cultured with constant levels of Wnt3a conditioned medium and increasing levels of Shh, we found that differing levels of Shh signaling elicit differing responses from somitic cells: the lowest level of Shh signaling allows dermomyotomal gene expression, intermediate levels induce loss of dermomyotomal markers and activation of myogenic differentiation, and higher levels induce loss of myotomal markers and activation of sclerotomal gene expression. In addition, we have found that in the presence of high levels of Wnt signaling, instead of inducing sclerotomal markers, Shh signals act to maintain the expression of dermomyotomal and myotomal markers. One of the sclerotomal genes induced by high levels of Shh signaling is Nkx3.2. Forced expression of Nkx3.2 blocks somitic expression of the dermomyotomal marker Pax3 both in vitro and in vivo. Conversely, forced expression of Pax3 in somites can block Shh-mediated induction of sclerotomal gene expression and chondrocyte differentiation in vitro. Thus we propose that varying levels of Shh signaling act in a morphogen-like manner to elicit differing responses from somitic cells, and that Pax3 and Nkx3.2 set up mutually repressing cell fates that promote either dermomyotome/myotome or sclerotome differentiation, respectively.  相似文献   

7.
8.
9.
10.
Neural crest cells are considered a key vertebrate feature that is studied intensively because of their relevance to development and evolution. Here we report the expression of Pax7 in the dorsal non‐neural ectoderm and in the trunk neural crest of the early chick embryo. Pax7 is expressed in the trunk neural crest migrating along the ventral and dorsolateral routes. Pax7 is first downregulated in the neural crest‐derived neuronal precursors, secondly in the glial, and finally in the melanocyte precursors. Conserved developmental expression in the melanocyte lineage of both Pax3 and Pax7 was evidenced in chick and quail, but only Pax3 in mouse and rat.  相似文献   

11.
12.
Pax3 and Pax7 paralogous genes have functionally diverged in vertebrate evolution, creating opportunity for a new distribution of roles between the two genes and the evolution of novel functions. Here we focus on the regulation and function of Pax7 in the brain and neural crest of amphibian embryos, which display a different pax7 expression pattern, compared to the other vertebrates already described. Pax7 expression is restricted to the midbrain, hindbrain and anterior spinal cord, and Pax7 activity is important for maintaining the fates of these regions, by restricting otx2 expression anteriorly. In contrast, pax3 displays broader expression along the entire neuraxis and Pax3 function is important for posterior brain patterning without acting on otx2 expression. Moreover, while both genes are essential for neural crest patterning, we show that they do so using two distinct mechanisms: Pax3 acts within the ectoderm which will be induced into neural crest, while Pax7 is essential for the inducing activity of the paraxial mesoderm towards the prospective neural crest.  相似文献   

13.
14.
Computations have been performed to find an adequate definition of exact two-sided probabilities in 2times2 contingency tables. It turns out, that both uncorrected χ2 and Yates' correction for continuity give only unsatisfactory approximations to the exact probabilities of the hypergeometric distribution. The latter are therefore recommended for general use.  相似文献   

15.
16.
The Pax3/7 gene family has a fundamental and conserved role during neural crest formation. In people, PAX3 mutation causes Waardenburg syndrome, and murine Pax3 is essential for pigment formation. However, it is unclear exactly how Pax3 functions within the neural crest. Here we show that pax3 is expressed before other pax3/7 members, including duplicated pax3b, pax7 and pax7b genes, early in zebrafish neural crest development. Knockdown of Pax3 protein by antisense morpholino oligonucleotides results in defective fate specification of xanthophores, with complete ablation in the trunk. Other pigment lineages are specified and differentiate. As a consequence of xanthophore loss, expression of pax7, a marker of the xanthophore lineage, is reduced in neural crest. Morpholino knockdown of Pax7 protein shows that Pax7 itself is dispensable for xanthophore fate specification, although yellow pigmentation is reduced. Loss of xanthophores after reduction of Pax3 correlates with a delay in melanoblast differentiation followed by significant increase in melanophores, suggestive of a Pax3-driven fate switch within a chromatophore precursor or stem cell. Analysis of other neural crest derivatives reveals that, in the absence of Pax3, the enteric nervous system is ablated from its inception. Therefore, Pax3 in zebrafish is required for specification of two specific lineages of neural crest, xanthophores and enteric neurons.  相似文献   

17.
18.
Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2(-/-) myotube formation. When differentiated in horse serum-containing medium, TIMP-2(-/-) myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2(-/-) myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with beta1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2(-/-) myotube size and induces increased MMP-9 activation and decreased beta1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on beta1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and beta1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo.  相似文献   

19.
The initial phase of muscle differentiation depends on the activities of protein kinases including phosphatidylinositol-3 kinase (PI-3K), the extracellular signal-regulated kinases ERK1/2 (p42 and p44), and p38 kinase. Myogenesis is also characterized by an apoptosis-resistant phenotype of myotubes. The effects of inhibitors of the above-mentioned protein kinases on myogenesis from C2C12 mouse myoblasts and on muscle cell apoptosis were examined individually over 5 successive days. The negative effects of PD98059 (5, 25, 50 microM), LY294002 (1, 5, 10 microM) and SB203580 (1, 5, 10 microM) on cell viability were evident at the initial stage of myogenesis (up to the 3rd day). On the 3rd day, nuclear expression of myogenin was suppressed dose-dependently by SB203580. In contrast, decreased cytoplasmic levels but elevated nuclear expressions of myogenin were observed in myotubes treated with PD98059 or LY294002. SB203580 treatment confirmed that p38 kinase is involved in the onset of myogenesis. The cytoplasmic and nuclear expression of NF-kappaB was elevated after treatment with the above-mentioned protein kinase inhibitors. Likewise, Bcl-2 expression in the cytosol increased. These studies might shed more light on the role of selected kinases and some survival systems in myogenesis impaired by neuromuscular disorders as well as safety of the treatment of the proliferative diseases with the kinase inhibitors.  相似文献   

20.
Recent studies of mouse mutant aphakia have implicated the homeobox gene Pitx3 in the survival of substantia nigra dopaminergic neurons, the degeneration of which causes Parkinson's disease. To directly investigate a role for Pitx3 in midbrain DA neuron development, we have analysed a line of Pitx3-null mice that also carry an eGFP reporter under the control of the endogenous Pitx3 promoter. We show that the lack of Pitx3 resulted in a loss of nascent substantia nigra dopaminergic neurons at the beginning of their final differentiation. Pitx3 deficiency also caused a loss of tyrosine hydroxylase (TH) expression specifically in the substantia nigra neurons. Therefore, our study provides the first direct evidence that the aphakia allele of Pitx3 is a hypomorph and that Pitx3 is required for the regulation of TH expression in midbrain dopaminergic neurons as well as the generation and/or maintenance of these cells. Furthermore, using the targeted GFP reporter as a midbrain dopaminergic lineage marker, we have identified previously unrecognised ontogenetically distinct subpopulations of dopaminergic cells within the ventral midbrain based on their temporal and topographical expression of Pitx3 and TH. Such an expression pattern may provide the molecular basis for the specific dependence of substantia nigra DA neurons on Pitx3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号