首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In developing retina, the nucleus of the elongated neuroepithelial cells undergoes interkinetic nuclear migration (INM), that is it migrates back and forth across the proliferative layer during the cell cycle. S-phase occurs at the basal side, while M-phase occurs at the apical margin of the retinal progenitors. G1 and G2-phases occur along the nuclear migration pathway. We tested whether this feature of the retinal cell cycle is controlled by CK2, which, among its many substrates, phosphorylates both molecular motors and cytoskeletal components. Double immunolabeling showed that CK2 is contained in BrdU-labeled retinal progenitors. INM was examined after pulse labeling the retina of newborn rats with BrdU, by plotting nuclear movement from basal to apical sides of the retinal progenitors during G2. The CK2 specific inhibitor 4,5,6,7-tetrabromobenzotriazole inhibited the activity of rat retinal CK2, and blocked nuclear movement proper in a dose-dependent way. No apoptosis was detected, and total numbers of BrdU-labeled nuclei remained constant following treatment. Immunohistochemistry showed that, following inhibition of CK2, the tubulin cytoskeleton is disorganized, with reduced acetylated and increased tyrosinated tubulin. This indicates a reduction in stable microtubules, with accumulation of free tubulin dimers. The results show that CK2 activity is required for INM in retinal progenitor cells.  相似文献   

2.
Emerging data indicate that actin dynamics is associated with ciliogenesis. However, the underlying mechanism remains unclear. Here we find that nuclear distribution gene C (NudC), an Hsp90 co-chaperone, is required for actin organization and dynamics. Depletion of NudC promotes cilia elongation and increases the percentage of ciliated cells. Further results show that NudC binds to and stabilizes cofilin 1, a key regulator of actin dynamics. Knockdown of cofilin 1 also facilitates ciliogenesis. Moreover, depletion of either NudC or cofilin 1 causes similar ciliary defects in zebrafish, including curved body, pericardial edema and defective left-right asymmetry. Ectopic expression of cofilin 1 significantly reverses the phenotypes induced by NudC depletion in both cultured cells and zebrafish. Thus, our data suggest that NudC regulates actin cytoskeleton and ciliogenesis by stabilizing cofilin 1.  相似文献   

3.
The CAP superfamily member, CRISPLD2, has previously been shown to be associated with nonsyndromic cleft lip and palate (NSCLP) in human populations and to be essential for normal craniofacial development in the zebrafish. Additionally, in rodent models, CRISPLD2 has been shown to play a role in normal lung and kidney development. However, the specific role of CRISPLD2 during these developmental processes has yet to be determined. In this study, it was demonstrated that Crispld2 protein localizes to the orofacial region of the zebrafish embryo and knockdown of crispld2 resulted in abnormal migration of neural crest cells (NCCs) during both early and late time points. An increase in cell death after crispld2 knockdown as well as an increase in apoptotic marker genes was also shown. This data suggests that Crispld2 modulates the migration, differentiation, and/or survival of NCCs during early craniofacial development. These results indicate an important role for Crispld2 in NCC migration during craniofacial development and suggests involvement of Crispld2 in cell viability during formation of the orofacies. genesis 53:660–667, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Humans with mutations in either DCX or LIS1 display nearly identical neuronal migration defects, known as lissencephaly. To define subcellular mechanisms, we have combined in vitro neuronal migration assays with retroviral transduction. Overexpression of wild-type Dcx or Lis1, but not patient-related mutant versions, increased migration rates. Dcx overexpression rescued the migration defect in Lis1+/- neurons. Lis1 localized predominantly to the centrosome, and after disruption of microtubules, redistributed to the perinuclear region. Dcx outlined microtubules extending from the perinuclear "cage" to the centrosome. Lis1+/- neurons displayed increased and more variable separation between the nucleus and the preceding centrosome during migration. Dynein inhibition resulted in similar defects in both nucleus-centrosome (N-C) coupling and neuronal migration. These N-C coupling defects were rescued by Dcx overexpression, and Dcx was found to complex with dynein. These data indicate Lis1 and Dcx function with dynein to mediate N-C coupling during migration, and suggest defects in this coupling may contribute to migration defects in lissencephaly.  相似文献   

5.
During mitosis in Saccharomyces cerevisiae, the mitotic spindle moves into the mother-bud neck via dynein-dependent sliding of cytoplasmic microtubules along the cortex of the bud. Here we show that Pac1, the yeast homologue of the human lissencephaly protein LIS1, plays a key role in this process. First, genetic interactions placed Pac1 in the dynein/dynactin pathway. Second, cells lacking Pac1 failed to display microtubule sliding in the bud, resulting in defective mitotic spindle movement and nuclear segregation. Third, Pac1 localized to the plus ends (distal tips) of cytoplasmic microtubules in the bud. This localization did not depend on the dynein heavy chain Dyn1. Moreover, the Pac1 fluorescence intensity at the microtubule end was enhanced in cells lacking dynactin or the cortical attachment molecule Num1. Fourth, dynein heavy chain Dyn1 also localized to the tips of cytoplasmic microtubules in wild-type cells. Dynein localization required Pac1 and, like Pac1, was enhanced in cells lacking the dynactin component Arp1 or the cortical attachment molecule Num1. Our results suggest that Pac1 targets dynein to microtubule tips, which is necessary for sliding of microtubules along the bud cortex. Dynein must remain inactive until microtubule ends interact with the bud cortex, at which time dynein and Pac1 appear to be offloaded from the microtubule to the cortex.  相似文献   

6.
Transendothelial migration of monocytes is the process by which monocytes leave the circulatory system and extravasate through the endothelial lining of the blood vessel wall and enter the underlying tissue. Transmigration requires coordination of alterations in cell shape and adhesive properties that are mediated by cytoskeletal dynamics. We have analyzed the function of RhoA in the cytoskeletal reorganizations that occur during transmigration. By loading monocytes with C3, an inhibitor of RhoA, we found that RhoA was required for transendothelial migration. We then examined individual steps of transmigration to explore the requirement for RhoA in extravasation. Our studies showed that RhoA was not required for monocyte attachment to the endothelium nor subsequent spreading of the monocyte on the endothelial surface. Time-lapse video microscopy analysis revealed that C3-loaded monocytes also had significant forward crawling movement on the endothelial monolayer and were able to invade between neighboring endothelial cells. However, RhoA was required to retract the tail of the migrating monocyte and complete diapedesis. We also demonstrate that p160ROCK, a serine/threonine kinase effector of RhoA, is both necessary and sufficient for RhoA-mediated tail retraction. Finally, we find that p160ROCK signaling negatively regulates integrin adhesions and that inhibition of RhoA results in an accumulation of beta2 integrin in the unretracted tails.  相似文献   

7.
This paper describes genes from yeast and mouse with significant sequence similarities to aDrosophila gene that encodes the blood cell tumor suppressor pendulin. The protein encoded by the yeast gene, Srp1p, and mouse pendulin share 42% and 51% amino acid identity withDrosophila pendulin, respectively. All three proteins consist of 10.5 degenerate tandem repeats of 42 amino acids each. Similar repeats occur in a superfamily of proteins that includes theDrosophila Armadillo protein. All three proteins contain a consensus sequence for a bipartite nuclear localization signal (NLS) in the N-terminal domain, which is not part of the repeat structure. Confocal microscopic analysis of yeast cells stained with antibodies against Srp1p reveals that this protein is intranuclear throughout the cell cycle. Targeted gene disruption shows thatSRP1 is an essential gene. Despite their sequence similarities,Drosophila and mouse pendulin are unable to rescue the lethality of anSRP1 disruption. We demonstrate that yeast cells depleted of Srp1p arrest in mitosis with a G2 content of DNA. Arrested cells display abnormal structures and orientations of the mitotic spindles, aberrant segregation of the chromatin and the nuclei, and threads of chromatin emanating from the bulk of nuclear DNA. This phenotype suggests that Srplp is required for the normal function of microtubules and the spindle pole bodies, as well as for nuclear integrity. We suggest that Srp1p interacts with multiple components of the cell nucleus that are required for mitosis and discuss its functional similarities to, and differences fromDrosophila pendulin.  相似文献   

8.
《Current biology : CB》2023,33(3):517-532.e5
  1. Download : Download high-res image (199KB)
  2. Download : Download full-size image
  相似文献   

9.
ObjectivesThe effects of general anaesthetics on fetal brain development remain elusive. Radial glial progenitors (RGPs) generate the majority of neurons in developing brains. Here, we evaluated the acute alterations in RGPs after maternal sevoflurane exposure.MethodsPregnant mice were exposed to 2.5% sevoflurane for 6 hours on gestational day 14.5. Interkinetic nuclear migration (INM) of RGPs in the ventricular zone (VZ) of the fetal brain was evaluated by thymidine analogues labelling. Cell fate of RGP progeny was determined by immunostaining using various neural markers. The Morris water maze (MWM) was used to assess the neurocognitive behaviours of the offspring. RNA sequencing (RNA‐Seq) was performed for the potential mechanism, and the potential mechanism validated by quantitative real‐time PCR (qPCR), Western blot and rescue experiments. Furthermore, INM was examined in human embryonic stem cell (hESC)‐derived 3D cerebral organoids.ResultsMaternal sevoflurane exposure induced temporary abnormities in INM, and disturbed the cell cycle progression of RGPs in both rodents and cerebral organoids without cell fate alternation. RNA‐Seq analysis, qPCR and Western blot showed that the Notch signalling pathway was a potential downstream target. Reactivation of Notch by Jag1 and NICD overexpression rescued the defects in INM. Young adult offspring showed no obvious cognitive impairments in MWM.ConclusionsMaternal sevoflurane exposure during neurogenic period temporarily induced abnormal INM of RGPs by targeting the Notch signalling pathway without inducing long‐term effects on RGP progeny cell fate or offspring cognitive behaviours. More importantly, the defects of INM in hESC‐derived cerebral organoids provide a novel insight into the effects of general anaesthesia on human brain development.  相似文献   

10.
Nuclear migrations are essential for metazoan development. Two nuclear migrations that occur during C. elegans development require the function of the unc-84 gene. unc-84 mutants are also defective in the anchoring of nuclei within the hypodermal syncytium and in the migrations of the two distal tip cells of the gonad. Complementation analyses of 17 unc-84 alleles defined two genetically separable functions. Both functions are required for nuclear and distal tip cell migrations, but only one is required for nuclear anchorage. The DNA lesions associated with these 17 mutations indicate that the two genetically defined functions correspond to two distinct regions of the UNC-84 protein. The UNC-84 protein has a predicted transmembrane domain and a C-terminal region with similarity to the S. pombe spindle pole body protein Sad1 and to two predicted mammalian proteins. Analysis of a green fluorescent protein reporter indicated that UNC-84 is widely expressed and localized to the nuclear envelope. We propose that UNC-84 functions to facilitate a nuclear-centrosomal interaction required for nuclear migration and anchorage.  相似文献   

11.
Numerous functions related to neuronal migration are linked to the glycoprotein reelin. Reelin also elongates radial glia, which are disrupted in mutant reeler mice. Our lab developed a model of cortical dysplasia in ferrets that shares features with the reeler mouse, including impaired migration of neurons into the cerebral cortex and disrupted radial glia. Explants of normal ferret cortex in coculture with dysplastic ferret cortex restore the deficits in this model. To determine if reelin is integral to the repair, we used explants of P0 mouse cortex either of the wild type (WT) or heterozygous (het) for the reelin gene, as well as P0 reeler cortex (not containing reelin), in coculture with organotypic cultures of dysplastic ferret cortex. This arrangement revealed that all types of mouse cortical explants (WT, het, reeler) elongated radial glia in ferret cortical dysplasia, indicating that reelin is not required for proper radial glial morphology. Migration of cells into ferret neocortex, however, did not improve with explants of reeler cortex, but was almost normal after pairing with WT or het explants. We also placed an exogenous source of reelin in ferret cultures at the pial surface to reveal that migrating cells move toward the reelin source in dysplastic cortex; radial glia in these cultures were also improved toward normal. Our results demonstrate that the normotopic position of reelin is important for proper neuronal positioning, and that reelin is capable of elongating radial glial cells but is not the only radialization factor.  相似文献   

12.
13.
Cerebellar granule neurons (CGNs) exploit Bergmann glia (BG) fibres for radial migration, and cell-cell contacts have a pivotal role in this process. Nevertheless, little is known about the mechanisms that control CGN-BG interaction. Here we demonstrate that the actin-binding protein profilin1 is essential for CGN-glial cell adhesion and radial migration. Profilin1 ablation from mouse brains leads to a cerebellar hypoplasia, aberrant organization of cerebellar cortex layers and ectopic CGNs. Conversely, neuronal progenitor proliferation, tangential migration of neurons and BG morphology appear to be independent of profilin1. Our mouse data and the mapping of developmental neuropathies to the chromosomal region of PFN1 suggest a similar function for profilin1 in humans.  相似文献   

14.
15.
Lixin Zhou 《FEBS letters》2010,584(14):3013-3020
Nucleoporin 153 (Nup153), a component of the nuclear pore complex (NPC), has been implicated in the interaction of the NPC with the nuclear lamina. Here we show that depletion of Nup153 by RNAi results in alteration of the organization of the nuclear lamina and the nuclear lamin-binding protein Sun1. More striking, Nup153 depletion induces a dramatic cytoskeletal rearrangement that impairs cell migration in human breast carcinoma cells. Our results point to a very prominent role of Nup153 in connection to cell motility that could be exploited in order to develop novel anti-cancer therapy.

Structured summary

MINT-7893777: Lamin-A/C (uniprotkb:P02545) and NUP153 (uniprotkb:P49790) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7893761: sun1 (uniprotkb:Q9D666) and Lamin-A/C (uniprotkb:P02545) colocalize (MI:0403) by fluorescence microscopy (MI:0416)  相似文献   

16.
Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. The LIS1 (or PAFAH1B1) gene was identified as the gene mutated in lissencephaly patients, and was found to regulate cytoplasmic dynein function and localization. In particular, LIS1 is essential for anterograde transport of cytoplasmic dynein as a part of the cytoplasmic dynein–LIS1–microtubule complex in a kinesin‐1‐dependent manner. However, the underlying mechanism by which a cytoplasmic dynein–LIS1–microtubule complex binds kinesin‐1 is unknown. Here, we report that mNUDC (mammalian NUDC) interacts with kinesin‐1 and is required for the anterograde transport of a cytoplasmic dynein complex by kinesin‐1. mNUDC is also required for anterograde transport of a dynactin‐containing complex. Inhibition of mNUDC severely suppressed anterograde transport of distinct cytoplasmic dynein and dynactin complexes, whereas motility of kinesin‐1 remained intact. Reconstruction experiments clearly demonstrated that mNUDC mediates the interaction of the dynein or dynactin complex with kinesin‐1 and supports their transport by kinesin‐1. Our findings have uncovered an essential role of mNUDC for anterograde transport of dynein and dynactin by kinesin‐1.  相似文献   

17.
Condensin is a 5 subunit complex that plays an important role in the structure of chromosomes during mitosis. It is known that phosphorylation of condensin subunits by cdc2/cyclin B at the beginning of mitosis is important for condensin activity, but the sites of these phosphorylation events have not been identified nor has their role in regulating condensin function. Here we identify two threonine residues in the CAP-G subunit of condensin, threonines 308 and 332, that are targets of cdc2/cyclin B phosphorylation. Mutation of these threonines to alanines results in defects in CAP-G localization with chromosomes during mitosis. These results are the first to identify phosphorylation sites within the condensin complex that regulate condensin localization with chromosomal DNA.  相似文献   

18.
 We have studied the role of the wingless gene in embryonic brain development of Drosophila. wingless is expressed in a large domain in the anlage of the protocerebrum and also transiently in smaller domains in the anlagen of the deutocerebrum and tritocerebrum. Elimination of the wingless gene in null mutants has dramatic effects on the developing protocerebrum; although initially generated, approximately one half of the protocerebrum is deleted in wingless null mutants by apoptotic cell death at late embryonic stages. Using temperature sensitive mutants, a rescue of the mutant phenotype can be achieved by stage-specific expression of functional wingless protein during embryonic stages 9–10. This time period correlates with that of neuroblast specification but preceeds the generation and subsequent loss of protocerebral neurons. Ectopic wingless over-expression in gain-of-function mutants results in dramatically oversized CNS. We conclude that wingless is required for the development of the anterior protocerebral brain region in Drosophila. We propose that an important role of wingless in this part of the developing brain is the determination of neural cell fate. Received: 7 October 1997 / Accepted: 30 December 1997  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号