首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During mouse embryonic development germ cells proliferate extensively until they commit to the male or female pathway and arrest in mitosis or meiosis respectively. Whilst the transition of female germ cells exiting the mitotic cell cycle and entering meiosis is well defined histologically, the essential cell cycle proteins involved in this process have remained unresolved. Using flow cytometry we have examined the entry of female germ cells into meiosis, their termination of DNA synthesis and entry into prophase I. Analysis of key G2/M cell cycle proteins revealed that entry into meiosis and cell cycle exit at G2/M involves repression of G2/M promoting Cyclin B1, coincident upregulation of G2/M repressing Cyclin B3 and robust establishment of the ATM/CHK2 pathway. By contrast we show that the ATR/CHK1 pathway is activated in male and female germ cells. This data indicates that an important G2/M surveillance mechanism operates during germ cell proliferation and that passage into meiotic G2/M involves the combined repression of G2/M through Cyclin B3 and activation of the key G2/M checkpoint regulatory network modulated through ATM and CHK2. This work shows that the core regulatory machinery that controls G2/M progression in mitotic cells is activated in female mouse germ cells as they enter meiosis.  相似文献   

2.
Cullin-RING ubiquitin ligases (CRLs) are the largest family of E3 ligases and require cullin neddylation for their activation. The NEDD8-activating enzyme inhibitor MLN4924 reportedly blocked cullin neddylation and inactivated CRLs, which resulted in apoptosis induction and tumor suppression. However, CRL roles in ovarian cancer cell survival and the ovarian tumor repressing effects of MLN4924 are unknown. We show here that CRL4 components are highly expressed in human epithelial ovarian cancer tissues. MLN4924-induced DNA damage, cell cycle arrest, and apoptosis in ovarian cancer cells in a time- and dose-dependent manner. In addition, MLN4924 sensitized ovarian cancer cells to other chemotherapeutic drug treatments. Depletion of CRL4 components Roc1/2, Cul4a, and DDB1 had inhibitory effects on ovarian cancer cells similar to MLN4924 treatment, which suggested that CRL4 inhibition contributed to the chemotherapeutic effect of MLN4924 in ovarian cancers. We also investigated for key CRL4 substrate adaptors required for ovarian cancer cells. Depleting Vprbp/Dcaf1 did not significantly affect ovarian cancer cell growth, even though it was expressed by ovarian cancer tissues. However, depleting Cdt2/Dcaf2 mimicked the pharmacological effects of MLN4924 and caused the accumulation of its substrate, CDT1, both in vitro and in vivo. MLN4924-induced DNA damage and apoptosis were partially rescued by Cdt1 depletion, suggesting that CRL4CDT2 repression and CDT1 accumulation were key biochemical events contributing to the genotoxic effects of MLN4924 in ovarian cancer cells. Taken together, these results indicate that CRL4CDT2 is a potential drug target in ovarian cancers and that MLN4924 may be an effective anticancer agent for targeted ovarian cancer therapy.  相似文献   

3.
The germ cell lineage is first recognized as a population of mitotically proliferating primordial germ cells that migrate toward the gonadal ridge. Shortly after arriving at the gonadal ridge, the germ cells begin to initiate a commitment to gamete production in the developing gonad. The mechanisms controlling this transition are poorly understood. We recently reported that a mouse germ cell nuclear antigen 1 (GCNA1) is initially detected in both male and female germ cells as they reach the gonad at 11.5 days postcoitum (dpc). GCNA1 is continually expressed in germ cells through all stages of gametogenesis until the diplotene/dictyate stage of meiosis I. Since GCNA1 expression commences soon after primordial germ cells arrive at the gonadal ridge, we wanted to determine whether the gonadal environment was essential for induction of GCNA1 expression. By examining GCNA1 expression in germ cells that migrate ectopically into the adrenal gland, we determined that both the gonadal and adrenal gland environments allow GCNA1 expression. We also examined GCNA1 expression in Ftz-F1 null mice, which are born lacking gonads and adrenal glands. During embryonic development in the Ftz-F1 null mice, the gonad and most germ cells undergo apoptotic degeneration at about 12.5 dpc. While most of the germ cells undergo apoptosis without expressing GCNA1, a few surviving germs cells, especially outside the involuting gonad clearly express GCNA1. Thus, although the Ftz-F1 gene is essential for gonadal and adrenal development, induction of GCNA1 expression in germ cells does not require Ftz-F1 gene products. The finding that germ cell GCNA1 expression is not restricted to the gonadal environment and is not dependent on the Ftz-F1 gene products suggests that GCNA1 expression may be initiated in the germ cell lineage by autonomous means. Mol. Reprod. Dev. 48:154–158, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Testicular teratomas result from anomalies in embryonic germ cell development. In the 129 family of inbred mouse strains, teratomas arise during the same developmental period that male germ cells normally enter G1/G0 mitotic arrest and female germ cells initiate meiosis (the mitotic:meiotic switch). Dysregulation of this switch associates with teratoma susceptibility and involves three germ cell developmental abnormalities seemingly critical for tumor initiation: delayed G1/G0 mitotic arrest, retention of pluripotency, and misexpression of genes normally restricted to embryonic female and adult male germ cells. One misexpressed gene, cyclin D1 (Ccnd1), is a known regulator of cell cycle progression and an oncogene in many tissues. Here, we investigated whether Ccnd1 misexpression in embryonic germ cells is a determinant of teratoma susceptibility in mice. We found that CCND1 localizes to teratoma-susceptible germ cells that fail to enter G1/G0 arrest during the mitotic:meiotic switch and is the only D-type cyclin misexpressed during this critical developmental time frame. We discovered that Ccnd1 deficiency in teratoma-susceptible mice significantly reduced teratoma incidence and suppressed the germ cell proliferation and pluripotency abnormalities associated with tumor initiation. Importantly, Ccnd1 expression was dispensable for somatic cell development and male germ cell specification and maturation in tumor-susceptible mice, implying that the mechanisms by which Ccnd1 deficiency reduced teratoma incidence were germ cell autonomous and specific to tumorigenesis. We conclude that misexpression of Ccnd1 in male germ cells is a key component of a larger pro-proliferative program that disrupts the mitotic:meiotic switch and predisposes 129 inbred mice to testicular teratocarcinogenesis.  相似文献   

5.
Fetal mouse testes and ovaries with their urogenital connections were cultured singly or in pairs on Nuclepore filters. When a testis in which the sex was not yet morphologically detectable was cultured together with older ovaries containing germ cells which were progressing through the meiotic prophase, the male germ cells were triggered to enter meiosis. When older fetal testes in which the testicular cords have developed were cultured together with ovaries of the same age with germ cells in meiosis, the oocytes were prevented from reaching diplotene stage. It was concluded that the fetal male and female gonads secrete diffusable substances which influence germ cell differentiation. The male gonad secretes a "meiosis-preventing substance" (MPS) which can arrest the female germ cells within the meiotic prophase. The female gonad secretes a "meiosis-inducing substance" (MIS) which can trigger the nondifferentiated male germ cells to enter meiosis.  相似文献   

6.
The mammalian Cul4 genes, Cul4A and Cul4B, encode the scaffold components of the cullin-based E3 ubiquitin ligases. The two Cul4 genes are functionally redundant. Recent study indicated that mice expressing a truncated CUL4A that fails to interact with its functional partner ROC1 exhibit no developmental phenotype. We generated a Cul4A−/− strain lacking exons 4–8 that does not express any detectable truncated protein. In this strain, the male mice are infertile and exhibit severe deficiencies in spermatogenesis. The primary spermatocytes are deficient in progression through late prophase I, a time point when expression of the X-linked Cul4B gene is silenced due to meiotic sex chromosome inactivation. Testes of the Cul4A−/− mice exhibit extensive apoptosis. Interestingly, the pachytene spermatocytes exhibit persistent double stranded breaks, suggesting a deficiency in homologous recombination. Also, we find that CUL4A localizes to the double stranded breaks generated in pre-pachytene spermatocytes. The observations identify a novel function of CUL4A in meiotic recombination and demonstrate an essential role of CUL4A in spermatogenesis.  相似文献   

7.
DNA synthesis–coupled proteolysis of the prereplicative complex component Cdt1 by the CRL4Cdt2 E3 ubiquitin ligase is thought to help prevent rereplication of the genome during S phase. To directly test whether CRL4Cdt2-triggered destruction of Cdt1 is required for normal cell cycle progression in vivo, we expressed a mutant version of Drosophila Cdt1 (Dup), which lacks the PCNA-binding PIP box (DupΔPIP) and which cannot be regulated by CRL4Cdt2. DupΔPIP is inappropriately stabilized during S phase and causes developmental defects when ectopically expressed. DupΔPIP restores DNA synthesis to dup null mutant embryonic epidermal cells, but S phase is abnormal, and these cells do not progress into mitosis. In contrast, DupΔPIP accumulation during S phase did not adversely affect progression through follicle cell endocycles in the ovary. In this tissue the combination of DupΔPIP expression and a 50% reduction in Geminin gene dose resulted in egg chamber degeneration. We could not detect Dup hyperaccumulation using mutations in the CRL4Cdt2 components Cul4 and Ddb1, likely because these cause pleiotropic effects that block cell proliferation. These data indicate that PIP box–mediated destruction of Dup is necessary for the cell division cycle and suggest that Geminin inhibition can restrain DupΔPIP activity in some endocycling cell types.  相似文献   

8.
Zhang SG  Yang WH  Qi YC  Li MX  Wang JH  Sun XM  Wang XS  Qi LW 《Plant cell reports》2008,27(11):1687-1696
A basic developmental framework of the Larix leptolepis Gord male gametophyte is presented in detail by squashing technique. The duration of the meiosis stage was more than 6 months, and included a long diffuse stage during winter. This long duration of the diffuse appearance of the diplotene stage makes L. leptolepis a unique suitable experimental material for studying the structure and function of the diffuse stage of meiosis. In particular, the processes of desynapsing and unpairing, which so far have received little attention, can be examined in detail. In L. leptolepis, the chromosomes undergo a dramatic structural reorganization during the diffuse diplotene stage. Based on the clearly visible differences in chromosome morphology, the diffuse diplotene stage was divided into four periods with suggested nomenclature as follows: schizonema, pre-diffuse diplotene, diffuse diplotene and post-diffuse diplotene. Both simultaneous and successive microsporogenesis were observed within L. leptolepis, and there was no strict relationship between the microsporogenesis types and the tetrad configurations, which are strongly influenced by spindle orientation, especially during meiosis II. The mature pollen grain at pollination consists of five cells aligned in an axial row. The prothallial cells cannot be regarded as senescent cells because they remain capable of division. S.-G. Zhang and W.-H. Yang have contributed equally to this work.  相似文献   

9.
H P Ren  L D Russell 《Tissue & cell》1992,24(4):565-573
Desmosome-gap (D-G) junctions were quantified in relation to germ cell meiosis in the male, specifically to test the hypothesis that the loss of these junctions is related to successful passage of cells through diplotene phase of Meiosis I and the two cytokineses that follow. Such a hypothesis has been proposed as the cause for the resumption of meiosis that occurs prior to ovulation in the female. D-G junctions were quantified in pachytene spermatocytes (stage XII), diplotene spermatocytes (stage XII), secondary spermatocytes (stage XIV) and step 1 spermatids (stage I). These were referred to as the cells of interest as compared with spermatocytes (zygotene spermatocytes, zygotene spermatocytes, pachytene spermatocytes, pachytene spermatocytes) in the same stages, respectively, that served as controls termed control cells. Since gap junctions are not easily recognized in the average sectioned profile of a desmosome-gap junction, only the desmosomal component was quantified. The data were expressed as both numbers and length of junctions per tubule, per cell profile and per unit lineal membrane length to overcome errors inherent in the methodologies utilized. There was no indication that numbers of junctions changed specifically in the cells of interest after passage through diplotene suggesting that these junctions do not have a comparable role in meiotic continuance in the male as proposed for the female. Interestingly, the control cells always showed greater numbers and length of junctions than the cells of interest suggesting that junction may relate more to the period of initiation of meiosis than to its continuance.  相似文献   

10.
Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex‐specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours. Results. In order to unravel the mechanisms utilized by germ cells to achieve and maintain the correct cell cycle states, we analysed the expression of a large number of cell cycle genes in purified germ cells across the crucial time of sex differentiation. Our results revealed common signalling for both XX and XY germ cell survival involving calcium signalling. A robust mechanism for apoptosis and checkpoint control was observed in XY germ cells, characterized by p53 and Atm (ataxia telangiectasia mutated) expression. Additionally, a member of the retinoblastoma family and p21 were identified, linking these factors to XY germ cell G1/G0 arrest. Lastly, in XX germ cells we observed a down‐regulation of genes involved in both G1‐ and G2‐phases of the cell cycle consistent with their entry into meiosis. Conclusion. The present study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors warranting further investigation in order to understand cases of aberrant cell cycle control in these specialized cells.  相似文献   

11.
To identify key molecules that regulate germ cell proliferation and differentiation, we have attempted to isolate protein kinase genes preferentially expressed in germ line cells. One such cDNA cloned from murine embryonic germ(EG) cells encodes a nonreceptor type serine/threonine kinase and is predominantly expressed in the testis, ovary, and spleen of adult mouse. The nucleotide sequence of the entire coding region shows that this clone, designated Plk1(polo like kinase 1), is identical with STPK13 previously cloned from murine erythroleukemia cells. The protein encoded by Plk1 is closely related to the product of Drosophila polo that plays a role in mitosis and meiosis. To define the role of Plk1 in germ cell development, we have examined its expression in murine gonads by in situ hybridization. Here we show that the PlK1 gene is specifically expressed in spermatocytes of diplotene and diakinesis stage, in secondary spermatocytes, and in round spermatids in testes. It is also expressed in growing oocytes and ovulated eggs. The pattern of expression of the Plk1 gene suggests that the gene product is involved in completion of meiotic division, and like the Drosophila polo protein, is a maternal factor active in embryos at the early cleavage stage. © 1995 Wiley-Liss, Inc.  相似文献   

12.
In mammals, germ cells within the developing gonad follow a sexually dimorphic pathway. Germ cells in the murine ovary enter meiotic prophase during embryogenesis, whereas germ cells in the embryonic testis arrest in G0 of mitotic cell cycle and do not enter meiosis until after birth. In mice, retinoic acid (RA) signaling has been implicated in controlling entry into meiosis in germ cells, as meiosis in male embryonic germ cells is blocked by the activity of a RA-catabolizing enzyme, CYP26B1. However, the mechanisms regulating mitotic arrest in male germ cells are not well understood. Cyp26b1 expression in the testes begins in somatic cells at embryonic day (E) 11.5, prior to mitotic arrest, and persists throughout fetal development. Here, we show that Sertoli cell-specific loss of CYP26B1 activity between E15.5 and E16.5, several days after germ cell sex determination, causes male germ cells to exit from G0, re-enter the mitotic cell cycle and initiate meiotic prophase. These results suggest that male germ cells retain the developmental potential to differentiate in meiosis until at least at E15.5. CYP26B1 in Sertoli cells acts as a masculinizing factor to arrest male germ cells in the G0 phase of the cell cycle and prevents them from entering meiosis, and thus is essential for the maintenance of the undifferentiated state of male germ cells during embryonic development.  相似文献   

13.
The capacity for T cells to become activated and clonally expand during pathogen invasion is pivotal for protective immunity. Our understanding of how T cell receptor (TCR) signaling prepares cells for this rapid expansion remains limited. Here we provide evidence that the E3 ubiquitin ligase Cullin-4b (Cul4b) regulates this process. The abundance of total and neddylated Cul4b increased following TCR stimulation. Disruption of Cul4b resulted in impaired proliferation and survival of activated T cells. Additionally, Cul4b-deficient CD4+ T cells accumulated DNA damage. In T cells, Cul4b preferentially associated with the substrate receptor DCAF1, and Cul4b and DCAF1 were found to interact with proteins that promote the sensing or repair of damaged DNA. While Cul4b-deficient CD4+ T cells showed evidence of DNA damage sensing, downstream phosphorylation of SMC1A did not occur. These findings reveal an essential role for Cul4b in promoting the repair of damaged DNA to allow survival and expansion of activated T cells.

How does T cell receptor signaling prepare T cells for their rapid clonal expansion during pathogen invasion? This study shows that levels of the E3 ubiquitin ligase Cul4b increase following T cell activation; once expressed, Cul4b helps to maintain DNA integrity in CD4+ T lymphocytes by aiding in the repair of replication-induced DNA damage.  相似文献   

14.
The RAD9A-RAD1-HUS1 (9-1-1) complex is a PCNA-like heterotrimeric clamp that binds damaged DNA to promote cell cycle checkpoint signaling and DNA repair. While various 9-1-1 functions in mammalian somatic cells have been established, mounting evidence from lower eukaryotes predicts critical roles in meiotic germ cells as well. This was investigated in 2 recent studies in which the 9-1-1 complex was disrupted specifically in the mouse male germline through conditional deletion of Rad9a or Hus1. Loss of these clamp subunits led to severely impaired fertility and meiotic defects, including faulty DNA double-strand break repair. While 9-1-1 is critical for ATR kinase activation in somatic cells, these studies did not reveal major defects in ATR checkpoint pathway signaling in meiotic cells. Intriguingly, this new work identified separable roles for 9-1-1 subunits, namely RAD9A- and HUS1-independent roles for RAD1. Based on these studies and the high-level expression of the paralogous proteins RAD9B and HUS1B in testis, we propose a model in which multiple alternative 9-1-1 clamps function during mammalian meiosis to ensure genome maintenance in the germline.  相似文献   

15.
In flowering plants, male gametes arise via meiosis of diploid pollen mother cells followed by two rounds of mitotic division. Haploid microspores undergo polar nuclear migration and asymmetric division at pollen mitosis I to segregate the male germline, followed by division of the germ cell to generate a pair of sperm cells. We previously reported two gemini pollen (gem) mutants that produced twin‐celled pollen arising from polarity and cytokinesis defects at pollen mitosis I in Arabidopsis. Here, we report an independent mutant, gem3, with a similar division phenotype and severe genetic transmission defects through pollen. Cytological analyses revealed that gem3 disrupts cell division during male meiosis, at pollen mitosis I and during female gametophyte development. We show that gem3 is a hypomorphic allele (aug6‐1) of AUGMIN subunit 6, encoding a conserved component in the augmin complex, which mediates microtubule (MT)‐dependent MT nucleation in acentrosomal cells. We show that MT arrays are disturbed in gem3/aug6‐1 during male meiosis and pollen mitosis I using fluorescent MT‐markers. Our results demonstrate a broad role for the augmin complex in MT organization during sexual reproduction, and highlight gem3/aug6‐1 mutants as a valuable tool for the investigation of augmin‐dependent MT nucleation and dynamics in plant cells.  相似文献   

16.
Numerous reagents were employed for differentiating induced pluripotent stem cells (iPSCs) into male germ cells; however, the induction procedure was ineffective. The aim of this study was to improve the in vitro differentiation of mice iPSCs (miPSCs) into male germ cells with retinoic acid (RA) and progesterone (P). miPSCs were differentiated to embryoid bodies (EBs) in suspension with RA with or without progesterone for 0, 4, and 7 days. Then, the expression of certain genes at different stages of male germ cell development including Ddx4 (pre meiosis), Stra8 (meiosis), AKAP3 (post meiosis), and Mvh protein was examined in RNA and/or protein levels by real-time polymerase chain reaction or flow cytometry, respectively. The Stra8 gene expression increased in the RA groups on all days. But, expression of this gene declined in RA + P groups. In addition, an increased expression of Ddx4 gene was observed on day 0 in the P group. Also, a significant upregulation was observed in the expression of AKAP3 gene in the RA + P group on days 0 and 4. However, gene expression decreased in P and RA groups on day 7. The expression of Mvh protein significantly increased in the RA group on day 7. The Mvh expression was also enhanced in the P group on day 4, but it decreased on day 7, while this protein upregulated on day 0 and 7 in the RA + P group. The miPSCs have the capacity for in vitro differentiation into male germ cells by RA and/or progesterone. However, the effects of these inducers depend on the type of combination and an effective time.  相似文献   

17.
During mouse fetal development, meiosis is initiated in female germ cells only, with male germ cells undergoing mitotic arrest. Retinoic acid (RA) is degraded by Cyp26b1 in the embryonic testis but not in the ovary where it initiates the mitosis/meiosis transition. However the role of RA status in fetal germ cell proliferation has not been elucidated. As expected, using organ cultures, we observed that addition of RA in 11.5 days post-conception (dpc) testes induced Stra8 expression and meiosis. Surprisingly, in 13.5 dpc testes although RA induced Stra8 expression it did not promote meiosis. On 11.5 and 13.5 dpc, RA prevented male germ cell mitotic arrest through PI3K signaling. Therefore 13.5 dpc testes appeared as an interesting model to investigate RA effects on germ cell proliferation/differentiation independently of RA effect on the meiosis induction. At this stage, RA delayed SSEA-1 extinction, p63γ expression and DNA hypermethylation which normally occur in male mitotic arrested germ cells. In vivo, in the fetal male gonad, germ cells cease their proliferation and loose SSEA-1 earlier than in female gonad and RA administration maintained male germ cell proliferation. Lastly, inhibition of endogenous Cyp26 activity in 13.5 dpc cultured testes also prevented male germ cell mitotic arrest. Our data demonstrate that the reduction of RA levels, which occurs specifically in the male fetal gonad and was known to block meiosis initiation, is also necessary to allow the establishment of the germ cell mitotic arrest and the correct further differentiation of the fetal germ cells along the male pathway.  相似文献   

18.
Cullin RING ligases (CRLs) constitute the largest family of ubiquitin ligases with diverse cellular functions. Conjugation of the ubiquitin-like molecule Nedd8 to a conserved lysine residue on the cullin scaffold is essential for the activity of CRLs. Using structural studies and in vitro assays, it has been demonstrated that neddylation stimulates CRL activity through conformational rearrangement of the cullin C-terminal winged-helix B domain and Rbx1 RING subdomain from a closed architecture to an open and dynamic structure, thus promoting ubiquitin transfer onto the substrate. Here, we tested whether the proposed mechanism operates in vivo in intact cells and applies to other CRL family members. To inhibit cellular neddylation, we used a cell line with tetracycline-inducible expression of a dominant-negative form of the Nedd8 E2 enzyme or treatment of cells with the Nedd8 E1 inhibitor MLN4924. Using these cellular systems, we show that different mutants of Cul2 and Cul3 and of Rbx1 that confer increased Rbx1 flexibility mimic neddylation and rescue CRL activity in intact cells. Our findings indicate that in vivo neddylation functions by inducing conformational changes in the C-terminal domain of Cul2 and Cul3 that free the RING domain of Rbx1 and bridge the gap for ubiquitin transfer onto the substrate.  相似文献   

19.
Skeletal dysplasias are a common, genetically heterogeneous cause of short stature that can result from disruptions in many cellular processes. We report the identification of the lesion responsible for skeletal dysplasia and male infertility in the spontaneous, recessive mouse mutant chagun. We determined that Poc1a, encoding protein of the centriole 1a, is disrupted by the insertion of a processed Cenpw cDNA, which is flanked by target site duplications, suggestive of a LINE-1 retrotransposon-mediated event. Mutant fibroblasts have impaired cilia formation and multipolar spindles. Male infertility is caused by defective spermatogenesis early in meiosis and progressive germ cell loss. Spermatogonial stem cell transplantation studies revealed that Poc1a is essential for normal function of both Sertoli cells and germ cells. The proliferative zone of the growth plate is small and disorganized because chondrocytes fail to re-align after cell division and undergo increased apoptosis. Poc1a and several other genes associated with centrosome function can affect the skeleton and lead to skeletal dysplasias and primordial dwarfisms. This mouse mutant reveals how centrosome dysfunction contributes to defects in skeletal growth and male infertility.  相似文献   

20.
NANOS2 is an RNA-binding protein essential for fetal male germ cell development. While we have shown that the function of NANOS2 is vital for suppressing meiosis in embryonic XY germ cells, it is still unknown whether NANOS2 plays other roles in the sexual differentiation of male germ cells. In this study, we addressed the issue by generating Nanos2/Stra8 double knockout (dKO) mice, whereby meiosis was prohibited in the double-mutant male germ cells. We found that the expression of male-specific genes, which was decreased in the Nanos2 mutant, was hardly recovered in the dKO embryo, suggesting that NANOS2 plays a role in male gene expression other than suppression of meiosis. To investigate the molecular events that may be controlled by NANOS2, we conducted a series of microarray analyses to search putative targets of NANOS2 that fulfilled 2 criteria: (1) increased expression in the Nanos2 mutant and (2) the mRNA associated with NANOS2. Interestingly, the genes predominantly expressed in undifferentiated primordial germ cells (PGCs) were significantly selected, implying the involvement of NANOS2 in the termination of the characteristics of PGCs. Furthermore, we showed that NANOS2 is required for the maintenance of mitotic quiescence, but not for the initiation of the quiescence in fetal male germ cells. These results suggest that NANOS2 is not merely a suppressor of meiosis, but instead plays pivotal roles in the sexual differentiation of male germ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号