共查询到20条相似文献,搜索用时 0 毫秒
1.
Autonomous and nonautonomous functions for Hox/Pbx in branchiomotor neuron development 总被引:1,自引:0,他引:1
The vertebrate branchiomotor neurons are organized in a pattern that corresponds with the segments, or rhombomeres, of the developing hindbrain and have identities and behaviors associated with their position along the anterior/posterior axis. These neurons undergo characteristic migrations in the hindbrain and project from stereotyped exit points. We show that lazarus/pbx4, which encodes an essential Hox DNA-binding partner in zebrafish, is required for facial (VIIth cranial nerve) motor neuron migration and for axon pathfinding of trigeminal (Vth cranial nerve) motor axons. We show that lzr/pbx4 is required for Hox paralog group 1 and 2 function, suggesting that Pbx interacts with these proteins. Consistent with this, lzr/pbx4 interacts genetically with hoxb1a to control facial motor neuron migration. Using genetic mosaic analysis, we show that lzr/pbx4 and hoxb1a are primarily required cell-autonomously within the facial motor neurons; however, analysis of a subtle non-cell-autonomous effect indicates that facial motor neuron migration is promoted by interactions amongst the migrating neurons. At the same time, lzr/pbx4 is required non-cell-autonomously to control the pathfinding of trigeminal motor axons. Thus, Pbx/Hox can function both cell-autonomously and non-cell-autonomously to direct different aspects of hindbrain motor neuron behavior. 相似文献
2.
3.
Dissecting out mechanisms responsible for peripheral neuropathic pain: implications for diagnosis and therapy 总被引:12,自引:0,他引:12
Woolf CJ 《Life sciences》2004,74(21):2605-2610
Peripheral neuropathic pain, that clinical pain syndrome associated with lesions to the peripheral nervous system, is characterized by positive and negative symptoms. Positive symptoms include spontaneous pain, paresthesia and dysthesia, as well as a pain evoked by normally innocuous stimuli (allodynia) and an exaggerated or prolonged pain to noxious stimuli (hyperalgesia/hyperpathia). The negative symptoms essentially reflect loss of sensation due to axon/neuron loss, the positive symptoms reflect abnormal excitability of the nervous system. Diverse disease conditions can result in neuropathic pain but the disease diagnosis by itself is not helpful in selecting the optimal pain therapy. Identification of the neurobiological mechanisms responsible for neuropathic pain is leading to a mechanism-based approach to this condition, which offers the possibility of greater diagnostic sensitivity and a more rational basis for therapy. We are beginning to move from an empirical symptom control approach to the treatment of pain to one targeting the specific mechanisms responsible. This review highlights some of the mechanisms underlying neuropathic pain and the novel targets they reveal for future putative analgesics. 相似文献
4.
In mouse ontogeny, neurons immunoreactive for transient receptor potential vanilloid receptor 1 (TRPV1) were observed primarily
in the dorsal root ganglia (DRG) at embryonic day 13 (E13). In the embryonic period, the number of TRPV1+ neurons decreased, but then gradually increased postnatally. Some of TRPV1+ neurons were also immunoreactive for calcitonin gene-related peptide (CGRP). At postnatal day 7 (P7), 66% of CGRP+ neurons were TRPV1+, and 55% of TRPV1+ neurons were also CGRP+ in the L4 DRG. In the peripheral organs, TRPV1-immunorective nerve fibers were transiently observed in the skin at E14. They
were also observed in the urinary tract at E14, and in the rectum at E15. Many TRPV1+ nerve fibers in these organs were also CGRP+. At P1, TRPV1+ nerve fibers were observed in the respiratory organs, and to a lesser extent in the stomach, colon, skin, and skeletal muscles.
The number of TRPV1+ nerve fibers on each organ gradually increased postnatally. At P7, TRPV1+ nerve fibers were also observed in the small intestine and kidneys. The percentage of total TRPV1+ nerve fibers that co-localized with CGRP was greater in most organs at P7 than at P1. The present results indicate that TRPV1
expression on peripheral processes differs among organs. The differential time course of TRPV1 expression in the cell bodies
might be related to the organs to which they project. Co-localization of TRPV1 with CGRP on nerve fibers also varies among
organs. This suggests that the TRPV1-mediated neuropeptide release that occurs in certain pathophysiologic conditions also
varies among organs. 相似文献
5.
Cox JA McAdow AR Dinitz AE McCallion AS Johnson SL Voigt MM 《Gene expression patterns : GEP》2011,11(7):409-414
The zebrafish is an ideal model for elucidating the cellular and molecular mechanisms that underlie development of the peripheral nervous system. A transgenic line that selectively labels all the sensory circuits would be a valuable tool for such investigations. In this study, we describe such a line: the enhancer trap zebrafish line Tg(SKIV2L2:gfp)j1775 which expresses green fluorescent protein (gfp) in the peripheral sensory ganglia. We show that this transgene marks all peripheral ganglia and sensory nerves, beginning at the time when the neurons are first extending their processes, but does not label the efferent nerves. The trapped reporter is inserted just upstream of a previously poorly described gene: lhfpl4 on LG6. The expression pattern of this gene by in situ hybridization reveals a different, but overlapping, pattern of expression compared to that of the transgene. This pattern also does not mimic that of the gene (skiv2l2), which provided the promoter element in the construct. These findings indicate that reporter expression is not dictated by an endogenous enhancer element, but instead arises through an unknown mechanism. Regardless, this reporter line should prove to be a valuable tool in the investigation of peripheral nervous system formation in the zebrafish. 相似文献
6.
Polysaccharides are essential biopolymers produced in all kingdoms of life. On the cell surface, they represent versatile architectural components, forming protective capsules and coats, cell walls, or adhesives. Extracellular polysaccharide (EPS) biosynthesis mechanisms differ based on the cellular localization of polymer assembly. Some polysaccharides are first synthesized in the cytosol and then extruded by ATP powered transporters [1]. In other cases, the polymers are assembled outside the cell [2], synthesized and secreted in a single step [3], or deposited on the cell surface via vesicular trafficking [4]. This review focuses on recent insights into the biosynthesis, secretion, and assembly of EPS in microbes, plants and vertebrates. We focus on comparing the sites of biosynthesis, secretion mechanisms, and higher-order EPS assemblies. 相似文献
7.
《Zoology (Jena, Germany)》2014,117(5):293-294
Living beings are extremely complex. Multiple structures, especially evolutionarily young ones, develop or take their final shape during late stages of embryonic development, when the body of an embryo is large and comprised of a huge number of cells. Yet, these late structures frequently need cellular sources from other locations and, sometimes, developmental stages. During recent years it became obvious that nerves provide a perfect solution for transporting and hosting multipotent cells that are later recruited to become new cellular sources in the innervated organs. Moreover, the role of nerves and nerve-dwelling cells in morphogenesis and regeneration seems to be much broader than was previously appreciated in invertebrate and vertebrate animals. In a broader view, nerves can provide material for morphological plasticity and evolutional diversity. 相似文献
8.
Neurotrophins are target-derived trophic factors essential for the survival and maintenance of neurons. Among these, nerve growth factor (NGF) and neurotrophin-3 (NT-3) are particularly important for sensory neurons. The actions of neurotrophins are through the p75 low-affinity receptor and the high-affinity receptor tyrosine kinase(trk). Each neurotrophin has its preferred receptor, i.e.trkA for NGF, andtrkC for NT-3. The primary sensory neurons in the dorsal root ganglion are classified into two categories, namely, the large and small sensory neurons based on their size. The large sensory neurons with the expression oftrkC depend on NT-3 for development and subserve the function of position sensations. Some of the small sensory neurons expresstrkA and are NGF-dependent. They are responsible for nociceptive sensation, the detection of painful and thermal stimuli. A more intriguing observation is the bidirectional interactions between nociceptive nerves and their target, the skin. The peripheral processes of small sensory neurons innervate the epidermis of the skin as free nerve endings. In denervated skin, there is a drastic reduction in the epidermal thickness, a finding corroborated by the phenomenon of trophic change, the shining and thinning of the skin, in the disorders of peripheral nerves. The performance of animals with peripheral nerve disorders improved after administration of neurotrophic factors. Based on these results, the therapeutic potentials of neurotrophic factors in human are under investigation. 相似文献
9.
We studied the ratios between number of neuroglial (=satellite) cells and number and volume of neurons with which they are associated in the spinal ganglia of two species of reptiles (lizard and gecko) and three species of mammals (mouse, rat, and rabbit). In all five species, we found that the number of satellite cells associated with a nerve cell body increased with increasing volume of the latter. This result shows that there is a quantitative balance between neuroglia and nerve tissue in spinal ganglia. This balance seems to be maintained by a tight regulation of the number of satellite cells. We also found that the mean volume of nerve cell body corresponding to a satellite cell was lower for small neurons than for large ones. Since satellite cells metabolically support spinal ganglion neurons, the metabolic needs of small neurons are better satisfied than those of large ones. For a nerve cell body of a given size, the number of associated satellite cells did not differ between the lizard and gecko, nor between the mouse, rat, and rabbit. However, this number was significantly smaller in the reptiles than in the mammals. This result could be explained by the lower metabolic rate in the nervous system of poikilotherms than mammals, or could have a phylogenetic significance. These two interpretations are not mutually exclusive. 相似文献
10.
roundabout (robo) family genes play key roles in axon guidance in a wide variety of animals. We have investigated the roles of the robo family members, robo, robo2, and robo3, in the guidance of sensory axons in the Drosophila embryo. In robo(-/-), slit(-/-), and robo(-/+) slit(-/+) mutants, lateral cluster sensory neurons misproject to cells and axons in the nearby ventral' (v') cluster. These phenotypes, together with the normal expression pattern of Slit and Robo, suggest that Slit ligand secreted from the epidermis interacts with Robo receptors on lateral cluster sensory growth cones to limit their exploration of nearby attractive substrates. The most common sensory axon phenotype seen in robo2(-/-) mutants was misprojection of dorsal cluster sensory axons away from their normal growth substrate, the transverse connective of the trachea. slit appears to play no role in this aspect of sensory axon growth. Robo2 is expressed, not on the dorsal sensory axons, but on the transverse connective. These results suggest a novel, non-cell-autonomous mechanism for axon guidance by robo family genes: Robo2 expressed on the trachea acts as an attractant for the dorsal sensory growth cones. 相似文献
11.
The distribution and ultrastructural features of peripheral nerve processes in the extra-retinal layers of the eyes of the zebrafish, Danio rerio (Hamilton), were investigated using light and transmission electron microscopy. A comparative study of the quality of preservation provided by three different fixation procedures revealed no consistently striking general differences. However, somewhat subjectively, the fixative containing Millonig's buffer did consistently provide better fixation of myelin. Overall, nerve processes, depending on the site studied, were distributed as either (1) bundles (in the choroid near the optic nerve head and in the choroid adjacent to the limbus), (2) linear arrays (in the junction between the sclera and cartilage and in the choroid adjacent to the retina) or (3) individual units (in the choroid under the cartilage or in the sclera). Both myelinated and unmyelinated processes were identified in these locations. Myelinated processes usually contained both neurofilaments and neurotubules, but a few apparently contained only neurofilaments. Unmyelinated processes usually contained mainly neurotubules, but a few apparently contained only neurofilaments. Taken together, these findings indicate innervation of extra-retinal structures, as seen in zebrafish, is highly conserved among vertebrates, further supporting the use of zebrafish as a model for the vertebrate visual system. 相似文献
12.
Further immunofluorescence-microscopic evidence for myosin in various peripheral nerves 总被引:1,自引:0,他引:1
Summary An indirect immunofluorescence microscopic technique using antibodies from rabbits against highly purified myosin from chicken gizzard was applied to various peripheral nerves (cranial nerves V, VII, X). Myosinspecific immunoreactivity was found in the axoplasm, in Schwann cells, in the perineural sheath and in vascular walls.This work was supported by grants from Deutsche Forschungsgemeinschaft (Un 34/4, Dr 91/1, Ste 105/19). Thanks are due to Ursula König, Renate Steffens and Christine Mahlmeister for skilful technical assistance. 相似文献
13.
目的:探讨感觉再训练及口服弥可保片剂对周围神经修复术后患者感觉功能的影响。方法:选取2009年10月至2011年10月我院收治的腕部损伤患者128例,随机分为A、B、C、D四组,每组各32例,在神经修复术及常规治疗的基础上,D组不采取其他任何措施治疗;C组给予弥可保片剂口服治疗;B组采取感觉再训练治疗;A组采取感觉再训练联合弥可保片剂口服治疗。对比患者术后1年及2年的感觉功能恢复情况及m2-PD检测结果。结果:A、B、C组术后1年及2年的感觉功能分级情况均优于D组,差异有统计学意义(P0.05)。其中,以A组与D组相比,差异最为显著(P0.05)。并且,A组的感觉功能随着时间的延长不断改善。A、B、C组的m2-PD检测结果均优于D组,差异有统计学意义(P0.05)。其中,A组术后1年及2年的检测结果分别为(6.79±2.08)mm、(4.98±2.05)mm,相比于D组的(13.31±1.64)mm、(11.94±2.37)mm,差异最为显著(P0.05);且术后2年的的检测结果明显低于术后1年,差异有统计学意义(P0.05)。结论:将感觉再训练与弥可保口服治疗相结合用于周围神经损伤患者的神经修复术后,治疗效果更佳。能够最大限度的促进患者感觉功能的恢复。 相似文献
14.
When embryonic central nervous system neurons are seeded at low densities with Eagle's basal medium supplemented with the serum substitute N1, glucose, and glutamine, neuronal survival for even 24 h requires the additional supply of exogenous pyruvate--and so does the survival of many peripheral nervous system neurons. Pyruvate can be replaced by alpha-ketoglutarate or oxaloacetate, but not by Krebs cycle substrates that are not keto acids. Most other alpha-keto acids tested (though not beta- or gamma-keto acids) also mimic pyruvate. The apparent equivalence to pyruvate of all these compounds includes identical ED50 values (300 microM for embryonic avian fore-brain neurons, 30-40 microM for rat hippocampal neurons), and also identical susceptibilities to the pyruvate-sparing effects of other low-molecular-weight agents present in Dulbecco's modified Eagle's medium or in astroglia conditioned medium. The substitute alpha-keto acids, however--unlike pyruvate, alpha-ketoglutarate, or oxaloacetate--support cell survival only in the presence of alpha-amino acids that transaminate to alpha-ketoglutarate, oxaloacetate, or pyruvate. The alpha-keto acids, therefore, operate as acceptors of amino groups from appropriate donors to generate Krebs cycle-relevant substrates. Consistent with this view, [14C]glutamate did not generate appreciable 14CO2 unless accompanied by a suitable alpha-keto acid.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
《Peptides》2013
Bradykinin-potentiating peptides from Bothrops jararaca (Bj) discovered in the early 1960s, were the first natural inhibitors of the angiotensin-converting enzyme (ACE). These peptides belong to a large family of snake venom proline-rich oligopeptides (PROs). One of these peptides, Bj-PRO-9a, was essential for defining ACE as effective drug target and development of captopril, an active site-directed inhibitor of ACE used worldwide for the treatment of human arterial hypertension. Recent experimental evidences demonstrated that cardiovascular effects exerted by different Bj-PROs are due to distinct mechanisms besides of ACE inhibition. In the present work, we have investigated the cardiovascular actions of four Bj-PROs, namely Bj-PRO-9a, -11e, -12b and -13a. Bj-PRO-9a acts upon ACE and BK activities to promote blood pressure reduction. Although the others Bj-PROs are also able to inhibit the ACE activity and to potentiate the BK effects, our results indicate that antihypertensive effect evoked by them involve new mechanisms. Bj-PRO-11e and Bj-PRO-12b involves induction of [Ca2+]i transients by so far unknown receptor proteins. Moreover, we have suggested argininosuccinate synthetase and M3 muscarinic receptor as targets for cardiovascular effects elicited by Bj-PRO-13a. In summary, the herein reported results provide evidence that Bj-PRO-mediated effects are not restricted to ACE inhibition or potentiation of BK-induced effects and suggest different actions for each peptide for promoting arterial pressure reduction. The present study reveals the complexity of the effects exerted by Bj-PROs for cardiovascular control, opening avenues for the better understanding of blood pressure regulation and for the development of novel therapeutic approaches. 相似文献
16.
17.
Mitochondria are ubiquitous organelles that play an essential role in energy conversion and biosynthetic pathways in eukaryotic cells. Most mitochondrial proteins must be imported from the cytosol and sorted into one of the four mitochondrial subcompartments, the outer membrane, the intermembrane space, the inner membrane and the matrix. Studies in recent years revealed a remarkable diversity of mechanisms and machineries that are required for the import of proteins into mitochondria. At least four different pathways for the sorting and assembly of nuclear-encoded mitochondrial proteins have been identified. 相似文献
18.
The Drosophila embryonic CNS arises from the neuroectoderm, which is divided along the dorsal‐ventral axis into two halves by specialized mesectodermal cells at the ventral midline. The neuroectoderm is in turn divided into three longitudinal stripes—ventral, intermediate, and lateral. The ventral nervous system defective, or vnd, homeobox gene is expressed from cellularization throughout early neural development in ventral neuroectodermal cells, neuroblasts, and ganglion mother cells, and later in an unrelated pattern in neurons. Here, in the context of the dorsal‐ventral location of precursor cells, we reassess the vnd loss‐ and gain‐of‐function CNS phenotypes using cell specific markers. We find that over expression of vnd causes significantly more profound effects on CNS cell specification than vnd loss. The CNS defects seen in vnd mutants are partly caused by loss of progeny of ventral neuroblasts—the commissures are fused and the longitudinal connectives are aberrantly positioned close to the ventral midline. The commissural vnd phenotype is associated with defects in cells that arise from the mesectoderm, where the VUM neurons have pathfinding defects, the MP1 neurons are mis‐specified, and the midline glia are reduced in number. vnd over expression results in the mis‐specification of progeny arising from all regions of the neuroectoderm, including the ventral neuroblasts that normally express the gene. The CNS of embryos that over express vnd is highly disrupted, with weak longitudinal connectives that are placed too far from the ventral midline and severely reduced commissural formation. The commissural defects seen in vnd gain‐of‐function mutants correlate with midline glial defects, whereas the mislocalization of interneurons coincides with longitudinal glial mis‐specification. Thus, Drosophila neural and glial specification requires that vnd expression by tightly regulated. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 118–136, 2002; DOI 10.1002/neu.10022 相似文献
19.
Summary The distribution of cholinergic neurons in the urinary tract and male genital organs of the cat was studied by a histochemical method for acetylcholinesterase. In addition to cell clusters in autonomic ganglia (intraganglionic cells), isolated extraganglionic cholinergic cells were found within the innervated tissues, usually in association with nerve trunks and blood vessels. Smaller neural cells with multiple axonal processes, identical to Cajal's interstitial cells, were found in the meshes of the terminal nerve plexus in smooth muscle, lamina propria and vascular wall.It is concluded that peripheral cholinergic neurons, like their adrenergic analogues, are arranged as a short intraganglionic, a shorter extraganglionic, and a terminal system of neurons.Supported in part by grants 10465 and 11285 from the USPHS and the Henry C. Buswell Urology Research Fund. 相似文献