首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphogenesis of the vertebrate head relies on proper dorsal-ventral (D-V) patterning of neural crest cells (NCC) within the pharyngeal arches. Endothelin-1 (Edn1)-induced signaling through the endothelin-A receptor (Ednra) is crucial for cranial NCC patterning within the mandibular portion of the first pharyngeal arch, from which the lower jaw arises. Deletion of Edn1, Ednra or endothelin-converting enzyme in mice causes perinatal lethality due to severe craniofacial birth defects. These include homeotic transformation of mandibular arch-derived structures into more maxillary-like structures, indicating a loss of NCC identity. All cranial NCCs express Ednra whereas Edn1 expression is limited to the overlying ectoderm, core paraxial mesoderm and pharyngeal pouch endoderm of the mandibular arch as well as more caudal arches. To define the developmental significance of Edn1 from each of these layers, we used Cre/loxP technology to inactivate Edn1 in a tissue-specific manner. We show that deletion of Edn1 in either the mesoderm or endoderm alone does not result in cellular or molecular changes in craniofacial development. However, ectodermal deletion of Edn1 results in craniofacial defects with concomitant changes in the expression of early mandibular arch patterning genes. Importantly, our results also both define for the first time in mice an intermediate mandibular arch domain similar to the one defined in zebrafish and show that this region is most sensitive to loss of Edn1. Together, our results illustrate an integral role for ectoderm-derived Edn1 in early arch morphogenesis, particularly in the intermediate domain.  相似文献   

2.
Expression of five frizzleds during zebrafish craniofacial development   总被引:1,自引:0,他引:1  
Wnt/Planar Cell Polarity (PCP) signaling is critical for proper animal development. While initially identified in Drosophila, this pathway is also essential for the proper development of vertebrates. Zebrafish mutants, defective in the Wnt/PCP pathway, frequently display defects in convergence and extension gastrulation movements and additional later abnormalities including problems with craniofacial cartilage morphogenesis. Although multiple Frizzled (Fzd) homologues, Wnt receptors, were identified in zebrafish, it is unknown which Fzd plays a role in shaping the early larvae head skeleton. In an effort to determine which Frizzleds are involved in this process, we analyzed the expression of five zebrafish frizzled homologues fzd2, 6, 7a, 7b, and 8a from 2–4 days post-fertilization (dpf). During the analyzed developmental time points fzd2 and fzd6 are broadly expressed throughout the head, while the expression of fzd7a, 7b and 8a is much more restricted. Closer examination revealed that fzd7b is expressed in the neural crest and the mesodermal core of the pharyngeal arches and in the chondrocytes of newly stacked craniofacial cartilage elements. However, fzd7a is only expressed in the neural crest of the pharyngeal arches and fzd8a is expressed in the pharyngeal endoderm.  相似文献   

3.
Craniofacial development requires signals from epithelia to pattern skeletogenic neural crest (NC) cells, such as the subdivision of each pharyngeal arch into distinct dorsal (D) and ventral (V) elements. Wnt signaling has been implicated in many aspects of NC and craniofacial development, but its roles in D-V arch patterning remain unclear. To address this we blocked Wnt signaling in zebrafish embryos in a temporally-controlled manner, using transgenics to overexpress a dominant negative Tcf3, (dntcf3), (Tg(hsp70I:tcf3-GFP), or the canonical Wnt inhibitor dickkopf1 (dkk1), (Tg(hsp70i:dkk1-GFP) after NC migration. In dntcf3 transgenics, NC cells in the ventral arches of heat-shocked embryos show reduced proliferation, expression of ventral patterning genes (hand2, dlx3b, dlx5a, msxe), and ventral cartilage differentiation (e.g. lower jaws). These D-V patterning defects resemble the phenotypes of zebrafish embryos lacking Bmp or Edn1 signaling, and overexpression of dntcf3 dramatically reduces expression of a subset of Bmp receptors in the arches. Addition of ectopic BMP (or EDN1) protein partially rescues ventral development and expression of dlx3b, dlx5a, and msxe in Wnt signaling-deficient embryos, but surprisingly does not rescue hand2 expression. Thus Wnt signaling provides ventralizing patterning cues to arch NC cells, in part through regulation of Bmp and Edn1 signaling, but independently regulates hand2. Similarly, heat-shocked dkk1+ embryos exhibit ventral arch reductions, but also have mandibular clefts at the ventral midline not seen in dntcf3+ embryos. Dkk1 is expressed in pharyngeal endoderm, and cell transplantation experiments reveal that dntcf3 must be overexpressed in pharyngeal endoderm to disrupt D-V arch patterning, suggesting that distinct endodermal roles for Wnts and Wnt antagonists pattern the developing skeleton.  相似文献   

4.

Background  

Craniofacial birth defects result from defects in cranial neural crest (NC) patterning and morphogenesis. The vertebrate craniofacial skeleton is derived from cranial NC cells and the patterning of these cells occurs within the pharyngeal arches. Substantial efforts have led to the identification of several genes required for craniofacial skeletal development such as the endothelin-1 (edn1) signaling pathway that is required for lower jaw formation. However, many essential genes required for craniofacial development remain to be identified.  相似文献   

5.
The Dlx genes play an important role in the development of the pharyngeal arches and the structures derived from these tissues, including the craniofacial skeleton. They are typically expressed in a nested pattern along the proximo‐distal axis of the branchial arches in mice. This pattern is known as the “Dlx code” and has been proposed to be responsible for an early regional patterning of branchial arches in mammals. A number of cis‐ regulatory elements (CREs) have been identified within the Dlx loci, which target reporter expression to the developing pharyngeal arches of the mouse. Most of these CREs are located in the intergenic regions between the two genes constituting a Dlx bigene cluster. Therefore, the regionalized dlx expression in the branchial arches could be the result of the shared activities of these regulatory regions. Here we analyze previously published and new results showing these CREs are highly conserved in both their sequence and their activity in the pharyngeal arches of two distantly related vertebrates, the zebrafish and the mouse. A better understanding of Dlx gene regulation of the Dlx genes and of the genetic cascades in which they are involved can lead to clues explaining variations in morphology of the craniofacial regions of vertebrates.  相似文献   

6.
Nanos proteins are essential for developing primordial germ cells (PGCs) in both invertebrates and vertebrates. In invertebrates, also contribute to the patterning of the anterior-posterior axis of the embryo and the neural development. In vertebrates, however, besides the role of Nanos proteins in PGC development, the biological functions of the proteins in normal development have not yet been identified. Here, we analyzed the expression and function of nanos1 during craniofacial development in zebrafish. nanos1 was expressed in the pharyngeal endoderm and endodermal pouches essential for the development of facial skeletons and endocrine glands in the vertebrate head. However, no craniofacial defects, such as abnormal pouches, hypoplasia of the thymus, malformed facial skeletons, have been found in nanos1 knockout animals. The normal craniofacial development of nanos1 knockout animals is unlikely a consequence of the genetic redundancy of Nanos1 with Nanos2 or Nanos3 or a result of the genetic compensation for the loss of Nanos1 by Nanos2 or Nanos3 because the expression of nanos2 and nanos3 was rarely seen in the pharyngeal endoderm and endodermal pouches in wild-type and nanos1 mutant animals during craniofacial development. Our findings suggest that nanos1 expression in the pharyngeal endoderm might be dispensable for craniofacial development in zebrafish.  相似文献   

7.
Every cartilage and bone in the vertebrate skeleton has a precise shape and position. The head skeleton develops in the embryo from the neural crest, which emigrates from the neural ectoderm and forms the skull and pharyngeal arches. Recent genetic data from mice and zebrafish suggest that cells in the pharyngeal segments are specified by positional information in at least two dimensions, Hox genes along the anterior-posterior axis and other homeobox genes along the dorsal-ventral axis within a segment. Many zebrafish and human mutant phenotypes indicate that additional genes are required for the development of groups of adjacent pharyngeal arches and for patterning along the mediolateral axis of the skull. The complementary genetic approaches in humans, mice and fish reveal networks of genes that specify the complex morphology of the head skeleton along a relatively simple set of coordinates.  相似文献   

8.
9.
10.
Barx1 modulates cellular adhesion molecule expression and participates in specification of tooth-types, but little is understood of its role in patterning the pharyngeal arches. We examined barx1 expression during zebrafish craniofacial development and performed a functional analysis using antisense morpholino oligonucleotides. Barx1 is expressed in the rhombencephalic neural crest, the pharyngeal arches, the pectoral fin buds and the gut in contrast to its paralogue barx2, which is most prominently expressed in the arch epithelium. Additionally, barx1 transient expression was observed in the posterior lateral line ganglia and developing trunk/tail. We show that Barx1 is necessary for proliferation of the arch osteochondrogenic progenitors, and that morphants exhibit diminished and dysmorphic arch cartilage elements due to reductions in chondrocyte differentiation and condensation. Attenuation of Barx1 results in lost arch expression of osteochondrogenic markers col2a1, runx2a and chondromodulin, as well as odontogenic marker dlx2b. Further, loss of barx1 positively influenced gdf5 and chordin, markers of jaw joint patterning. FGF signaling is required for maintaining barx1 expression, and that ectopic BMP4 induces expression of barx1 in the intermediate region of the second pharyngeal arch. Together, these results indicate an essential role for barx1 at early stages of chondrogenesis within the developing zebrafish viscerocranium.  相似文献   

11.
12.
We have isolated an amphioxus T-box gene that is orthologous to the two vertebrate genes, Tbx1 and Tbx10, and examined its expression pattern during embryonic and early larval development. AmphiTbx1/10 is first expressed in branchial arch endoderm and mesoderm of developing neurulae, and in a bilateral, segmented pattern in the ventral half of newly formed somites. Branchial expression is restricted to the first three branchial arches, and disappears completely by 4 days post fertilization. Ventral somitic expression is restricted to the first 10–12 somites, and is not observed in early larvae except in the most ventral mesoderm of the first three branchial arches. No expression can be detected by 4 days post fertilization. Integrating functional, phylogenetic and expression data from amphioxus and a variety of vertebrate model organisms, we have reconstructed the early evolutionary history of the Tbx1/10 subfamily of genes within the chordate lineage. We conclude that Tbx1/10-mediated branchial arch endoderm and mesoderm patterning functions predated the origin of neural crest, and that ventral somite specification functions predated the origin of vertebrate sclerotome, but that Tbx1 was later co-opted during the evolution of developmental programs regulating branchial neural crest and sclerotome migration.Edited by M. Akam  相似文献   

13.
The presence of a muscularised pharynx with skeletal support is a fundamental vertebrate characteristic. Developmentally, the pharynx arises from the pharyngeal arches on either side of the head of vertebrate embryos. The development of the pharyngeal arches is complex involving a number of disparate embryonic populations, ectoderm, endoderm, neural crest and mesoderm, which must be co-ordinated to generate the components and overall identity of each of the arches. Previous studies suggested that it is the neural crest that plays a pivotal role in patterning the pharyngeal arches. It is now also becoming clear, however, that there are crest-independent patterning mechanisms. Therefore, pharyngeal arch patterning is more complex than was previously believed and there must be an integration of crest-dependent and -independent patterning mechanisms. BioEssays 23:54-61, 2001.  相似文献   

14.
P2X receptors are non-selective cation channels operated by extracellular ATP. Currently, little is known concerning the functions of these receptors during development. Previous work from our lab has shown that zebrafish have two paralogs of the mammalian P2X3 receptor subunit. One paralog, p2rx3.1, is expressed in subpopulations of neural and ectodermal cells in the embryonic head. To investigate the role of this subunit in early cranial development, we utilized morpholino oligonucleotides to disrupt its translation. Loss of this subunit resulted in craniofacial defects that included malformation of the pharyngeal skeleton. During formation of these structures, there was a marked increase in cell death within the branchial arches. In addition, the epibranchial (facial, glossopharyngeal, and vagal) cranial sensory ganglia and their circuits were perturbed. These data suggest that p2rx3.1 function in ectodermal cells is involved in purinergic signaling essential for proper craniofacial development and sensory circuit formation in the embryonic and larval zebrafish.  相似文献   

15.
16.
Laterality is fundamental to the vertebrate body plan. Here, we investigate the roles of fgf8 signaling in LR patterning of the zebrafish embryo. We find that fgf8 is required for proper asymmetric development of the brain, heart and gut. When fgf8 is absent, nodal signaling is randomized in the lateral plate mesoderm, leading to aberrant LR orientation of the brain and visceral organs. We also show that fgf8 is necessary for proper symmetric development of the pharyngeal skeleton. Attenuated fgf8 signaling results in consistently biased LR asymmetric development of the pharyngeal arches and craniofacial skeleton. Approximately 1/3 of zebrafish ace/fgf8 mutants are missing Kupffer's vesicle (KV), a ciliated structure similar to Hensen's node. We correlate fgf8 deficient laterality defects in the brain and viscera with the absence of KV, supporting a role for KV in proper LR patterning of these structures. Strikingly, we also correlate asymmetric craniofacial development in ace/fgf8 mutants with the presence of KV, suggesting roles for KV in lateralization of the pharyngeal skeleton when fgf8 is absent. These data provide new insights into vertebrate laterality and offer the zebrafish ace/fgf8 mutant as a novel molecular tool to investigate tissue-specific molecular laterality mechanisms.  相似文献   

17.
18.
19.
Previous studies have implicated Sonic hedgehog (Shh) as an important regulator of pharyngeal region development. Here we show that Shh is differentially expressed within the pharyngeal endoderm along the anterior-posterior axis. In Shh-/- mutants, the pharyngeal pouches and arches formed by E9.5 and marker expression showed that initial patterning was normal. However, by E10.5-E11.0, the first arch had atrophied and the first pouch was missing. Although small, the second, third, and fourth arches and pouches were present. The expression patterns of Fgf8, Pax1, and Bmp4 suggested that pouch identity was abnormal at E10.5 and that Shh is a negative regulator of these genes in the pouches. Despite the loss of pouch identity and an increase in mesenchymal cell death, arch identity markers were expressed normally. Our data show that a Shh-dependent patterning mechanism is required to maintain pouch patterning, independent or downstream of arch identity. Changes in the distribution of Bmp4 and Gcm2 in the third pouch endoderm and subsequent organ phenotypes in Shh-/- mutants suggested that exclusion of Shh from the third pouch is required for dorsal-ventral patterning and for parathyroid specification and organogenesis. Furthermore, this function for Shh may be opposed by Bmp4. Our data suggest that, as in the posterior gut endoderm, exclusion of Shh expression from developing primordia is required for the proper development of pharyngeal-derived organs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号