首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neural crest cells that form the vertebrate head skeleton migrate and interact with surrounding tissues to shape the skull, and defects in these processes underlie many human craniofacial syndromes. Signals at the midline play a crucial role in the development of the anterior neurocranium, which forms the ventral braincase and palate, and here we explore the role of Hedgehog (Hh) signaling in this process. Using sox10:egfp transgenics to follow neural crest cell movements in the living embryo, and vital dye labeling to generate a fate map, we show that distinct populations of neural crest form the two main cartilage elements of the larval anterior neurocranium: the paired trabeculae and the midline ethmoid. By analyzing zebrafish mutants that disrupt sonic hedgehog (shh) expression, we demonstrate that shh is required to specify the movements of progenitors of these elements at the midline, and to induce them to form cartilage. Treatments with cyclopamine, to block Hh signaling at different stages, suggest that although requirements in morphogenesis occur during neural crest migration beneath the brain, requirements in chondrogenesis occur later, as cells form separate trabecular and ethmoid condensations. Cell transplantations indicate that these also reflect different sources of Shh, one from the ventral neural tube that controls trabecular morphogenesis and one from the oral ectoderm that promotes chondrogenesis. Our results suggest a novel role for Shh in the movements of neural crest cells at the midline, as well as in their differentiation into cartilage, and help to explain why both skeletal fusions and palatal clefting are associated with the loss of Hh signaling in holoprosencephalic humans.  相似文献   

2.
Patterning of the ventral head has been attributed to various cell populations, including endoderm, mesoderm, and neural crest. Here, we provide evidence that head and heart development may be influenced by a ventral midline endodermal cell population. We show that the ventral midline endoderm of the foregut is generated directly from the extreme rostral portion of Hensen's node, the avian equivalent of the Spemann organizer. The endodermal cells extend caudally in the ventral midline from the prechordal plate during development of the foregut pocket. Thus, the prechordal plate appears as a mesendodermal pivot between the notochord and the ventral foregut midline. The elongating ventral midline endoderm delimits the right and left sides of the ventral foregut endoderm. Cells derived from the midline endoderm are incorporated into the endocardium and myocardium during closure of the foregut pocket and fusion of the bilateral heart primordia. Bilateral ablation of the endoderm flanking the midline at the level of the anterior intestinal portal leads to randomization of heart looping, suggesting that this endoderm is partitioned into right and left domains by the midline endoderm, thus performing a function similar to that of the notochord in maintaining left-right asymmetry. Because of its derivation from the dorsal organizer, its extent from the forebrain through the midline of the developing face and pharynx, and its participation in formation of a single midline heart tube, we propose that the ventral midline endoderm is ideally situated to function as a ventral organizer of the head and heart.  相似文献   

3.
The vertebrate head characteristically has two types of mesenchyme: the neural crest-derived ectomesenchyme and the mesoderm derived mesenchyme. Conserved patterns of development in various animal taxa imply the presence of shared inductive events for cephalic mesenchyme. These developmental programs can serve as developmental constraints that emerge as morphological homology of embryonic patterns. To understand the evolutionary changes in the developmental programs that shape the skull, we need to separate ancestral and derived patterns of vertebrate craniogenesis. This review deals with the terminology for neural crest cell subpopulations at each developmental stage, based on the topographical relationships and possible mechanisms for specification. The aim is to identify the changes that could have occurred in the evolutionary history of vertebrates. From comparisons of a lamprey species, Lethenteron japonicum, with gnathostomes it is clear that the initial distribution of cephalic crest cells is identical in the two animal lineages. In all vertebrate embryos, the trigeminal crest (TC) cells of an early pharyngula are subdivided into three subpopulations. At this stage, only the posterior subpopulation of the TC cells is specified as the mandibular arch, as compared to the more rostral components, the 'premandibular crest cells'. Later in development, the local specification patterns of the lamprey and the gnathostomes differ, so that homology cannot be established in the craniofacial primordia, including the oral apparatus. Therefore, embryological terminology should reflect these hierarchical patterns in developmental stages and phylogeny.  相似文献   

4.
Recent studies of the heads of vertebrates have shown a primitive pattern of segmentation in the mesoderm and neural plate not previously recognized. The role of this pattern in the subsequent distribution of cranial crest and the development of branchial arches and cranial nerves, may resolve century-old arguments about the evolution of vertebrate segmentation. In this study, we examine the early embryonic development of the cranium of a primitive amniote, the snapping turtle, with the SEM. We show that the paraxial mesoderm cranial to the first-formed somites is segmented and that this pattern is based on somitomeres, similar to those described in the embryos of chick and mouse. Seven contiguous pairs of somitomeres comprise the “head mesoderm”; the first pair of somites actually arise from the eighth pair of somitomeres added to the axis. Cranial somitomeres are associated with specific brain regions, in that the first pair lie adjacent to prosencephalon, the second and third pair are adjacent to the mesencephalon, and the fourth, fifth, sixth, and seventh pair of somitomeres lie adjacent to individual neuromeres of the rhombencephalon. Prior to the closure of the anterior neuropore, cranial neural crest cells first emerge from the mesencephalon and migrate onto the second and third somitomeres. Shortly thereafter, neural crest cells emerge at more caudal levels of the rhombencephalon, beginning at the juncture of the fifth and sixth somitomeres. Eventually, neural crest originating from the mesencephalon spreads caudally as far as the fourth somitomere, leaving a gap in crest emigration adjacent to the fifth somitomere. The otic placode develops from the surface ectoderm covering the sixth and seventh somitomeres, and the adjacent rhombencephalic neural crest moves around the cranial and caudal edge of the placode. At more caudal levels, rhombencephalic crest cells merge with cervical crest populations to form a continuous sheet over the somites. By the time the anterior neuropore closes, some of the mesencephalic crest cells return from the paraxial mesoderm to spread onto the rostral wall of the optic vesicle and future telencephalon. The segmentation of the mesoderm and patterned distribution of cranial neural crest seen in snapping turtle embryos, further strengthens the argument that the heads of amniotes are derived from a common metameric pattern established early during gastrulation.  相似文献   

5.
The cardiac neural crest contains ectomesenchymal and neural anlagen that are necessary for normal heart development. It is not known whether other regions of the neural crest are capable of supporting normal heart development. In the experiments reported herein, quail donor embryos provided cardiac, trunk, or mesencephalic neural crest to replace or add to the chick host cardiac neural crest. Neither trunk nor mesencephalic neural crest was capable of generating ectomesenchyme competent to effect truncal septation. Addition of mesencephalic neural crest resulted in a high incidence of persistent truncus arteriosus, suggesting that ectomesenchyme derived from the mesencephalic region interferes with ectomesenchyme derived from the cardiac neural crest. Derivatives from the trunk neural crest, on the other hand, did not result in abnormal development of the truncal septum. While mesencephalic neural crest seeded the cardiac ganglia with both neurons and supporting cells, this capability was limited in the trunk neural crest to the more mature regions. These studies indicate a predetermination of the ectomesenchymal derivatives of the cranial neural crest and a possible competition of neural anlagen to form neurons and supporting cells in the cardiac ganglia.  相似文献   

6.
Craniofacial development of vertebrates depends largely on neural crest contribution and each subdomain of the crest-derived ectomesenchyme follows its specific genetic control. The rat small eye ( rSey ) involves a mutation in the Pax-6 gene and the external feature of rSey homozygous embryos exhibits craniofacial defects in ocular and frontonasal regions. In order to identify the mechanism of craniofacial development, we examined the cranial morphology and migration of cephalic crest cells in rSey embryos. The chondrocranial defects of homozygous rSey embryos primarily consisted of spheno-orbital and ethmoidal anomalies. The former defects appeared to be brought about by the lack of the eye. In the ethmoid region, the nasal septum and the derivative of the medial nasal prominence were present, while the rest of the nasal capsule, as well as the nasal and lachrymal bones, were totally absent except for a pair of cartilaginous rods in place of the nasal capsule. This suggests that the primary cranial defect is restricted to the lateral nasal prominence derivatives. Dil labeling revealed the abnormal migration of crest cells specifically from the anterior midbrain to the lateral nasal prominence in homozygous rSey embryos. Pax-6 was not expressed in the crest cells but was strongly expressed in the frontonasal ectoderm. To determine whether or not this migratory defect actually resides in environmental cues, normal midbrain crest cells from wild-type embryos were labeled with Dil and were orthotopically injected into host rSey embryos. Migration of the donor crest cells into the lateral nasal prominence was abnormal in homozygous host embryos, while they migrated normally in wild-type or heterozygous embryos. Therefore, the cranial defects in rSey homozygous embryos are due to inappropriate substrate for crest cell migration towards the lateral nasal prominence, which consistently explains the cranial morphology of homozygous rSey embryos.  相似文献   

7.
Summary: The migrating cranial neural crest cells of birds, fish, and mammals have been shown to form the membranous bones of the cranium and face. These findings have been extrapolated to suggest that all the dermal bones of the vertebrate exoskeleton are derived from the neural crest ectomesenchyme. However, only one group of extant animals, the Chelonians, has an extensive bony exoskeleton in the trunk. We have previously shown that the autapomorphic carapacial and plastron bones of the turtle shell arise from dermal intramembranous ossification. Here, we show that the bones of the plastron stain positively for HNK‐1 and PDGFRα and are therefore most likely of neural crest origin. This extends the hypothesis of the neural crest origin of the exoskeleton to include the turtle plastron. genesis 31:111–117, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

8.
In recent studies of chick embryos, the cranial paraxial mesoblast was found to be patterned into segmental units termed somitomeres. Anterior to the first segmental cleft, seven contiguous segments are aligned, with somitomeric interfaces forming grooves at right angles to the midline. In this study, the morphological relationship between the migratory pathways of cranial neural crest cells and patterned primary mesenchyme was analyzed with the scanning electron microscope, utilizing stereo imaging. In addition, the development of neuromeres in the adjacent neural tube was monitored. It was found that cranial neural crest first appears along the dorsal midline as a ridge of cells which loosens from the wall of the neural tube and migrates laterally as discrete populations. The mesencephalic crest appears first, immediately following neural tube fusion at that level, and migrates over the dorsal surface of the adjacent third somitomere and into the grooves formed by its juncture with the second and fourth somitomeres. Later, the addition of prosencephalic and rostral rhombencephalic crest extends the mesencephalic population to form a shelf of crest which spreads over the dorsal surface of the first four somitomeres. Component cells of this most cranial crest shelf become oriented and mimic the metameric pattern of the subjacent somitomeres. Crest cells adjacent to the fifth somitomeres appear along the midline, but do not migrate, creating a gap anterior to the otic crest. By stage 9, a narrow finger-like segment of the otic crest migrates from a specific neuromere into the grooved interface between the fifth and sixth somitomeres, delimiting the rostral border of the otic placode in the ectoderm above. By the end of stage 9, crest cells delimiting the caudal border of the placode have migrated along the interface of the seventh and eighth somitomeres. The crest cells adjacent to the sixth and seventh somitomeres, between the rostral and caudal otic populations, appear but do not migrate, remaining condensed along the midline. Thus, otic crest cells form a ring which circumscribes the invaginating otic placode. This study suggests that the precise distribution of cranial neural crest cells may result from their introduction at specific times, as specific populations from specific brain regions (neuromeres), onto a patterned mesodermal layer.  相似文献   

9.
Cartilage of the vertebrate jaw is derived from cranial neural crest cells that migrate to the first pharyngeal arch and form a dorsal "maxillary" and a ventral "mandibular" condensation. It has been assumed that the former gives rise to palatoquadrate and the latter to Meckel's (mandibular) cartilage. In anamniotes, these condensations were thought to form the framework for the bones of the adult jaw and, in amniotes, appear to prefigure the maxillary and mandibular facial prominences. Here, we directly test the contributions of these neural crest condensations in axolotl and chick embryos, as representatives of anamniote and amniote vertebrate groups, using molecular and morphological markers in combination with vital dye labeling of late-migrating cranial neural crest cells. Surprisingly, we find that both palatoquadrate and Meckel's cartilage derive solely from the ventral "mandibular" condensation. In contrast, the dorsal "maxillary" condensation contributes to trabecular cartilage of the neurocranium and forms part of the frontonasal process but does not contribute to jaw joints as previously assumed. These studies reveal the morphogenetic processes by which cranial neural crest cells within the first arch build the primordia for jaw cartilages and anterior cranium.  相似文献   

10.
Hedgehog (Hh) signaling plays multiple roles in the development of the anterior craniofacial skeleton. We show that the earliest function of Hh is indirect, regulating development of the stomodeum, or oral ectoderm. A subset of post-migratory neural crest cells, that gives rise to the cartilages of the anterior neurocranium and the pterygoid process of the palatoquadrate in the upper jaw, condenses upon the upper or roof layer of the stomodeal ectoderm in the first pharyngeal arch. We observe that in mutants for the Hh co-receptor smoothened (smo) the condensation of this specific subset of crest cells fails, and expression of several genes is lost in the stomodeal ectoderm. Genetic mosaic analyses with smo mutants show that for the crest cells to condense the crucial target tissue receiving the Hh signal is the stomodeum, not the crest. Blocking signaling with cyclopamine reveals that the crucial stage, for both crest condensation and stomodeal marker expression, is at the end of gastrulation--some eight to ten hours before crest cells migrate to associate with the stomodeum. Two Hh genes, shh and twhh, are expressed in midline tissue at this stage, and we show using mosaics that for condensation and skeletogenesis only the ventral brain primordium, and not the prechordal plate, is an important Hh source. Thus, we propose that Hh signaling from the brain primordium is required for proper specification of the stomodeum and the stomodeum, in turn, promotes condensation of a subset of neural crest cells that will form the anterior neurocranial and upper jaw cartilage.  相似文献   

11.
Smad4 is required to regulate the fate of cranial neural crest cells   总被引:1,自引:0,他引:1  
Ko SO  Chung IH  Xu X  Oka S  Zhao H  Cho ES  Deng C  Chai Y 《Developmental biology》2007,312(1):435-447
Smad4 is the central mediator for TGF-β/BMP signals, which are involved in regulating cranial neural crest (CNC) cell formation, migration, proliferation and fate determination. It is unclear whether TGF-β/BMP signals utilize Smad-dependent or -independent pathways to control the development of CNC cells. To investigate the functional significance of Smad4 in regulating CNC cells, we generated mice with neural crest specific inactivation of the Smad4 gene. Our study shows that Smad4 is not required for the migration of CNC cells, but is required in neural crest cells for the development of the cardiac outflow tract. Smad4 is essential in mediating BMP signaling in the CNC-derived ectomesenchyme during early stages of tooth development because conditional inactivation of Smad4 in neural crest derived cells results in incisor and molar development arrested at the dental lamina stage. Furthermore, Smad-mediated TGF-β/BMP signaling controls the homeobox gene patterning of oral/aboral and proximal/distal domains within the first branchial arch. At the cellular level, a Smad4-mediated downstream target gene(s) is required for the survival of CNC cells in the proximal domain of the first branchial arch. Smad4 mutant mice show underdevelopment of the first branchial arch and midline fusion defects. Taken together, our data show that TGF-β/BMP signals rely on Smad-dependent pathways in the ectomesenchyme to mediate epithelial-mesenchymal interactions that control craniofacial organogenesis.  相似文献   

12.
Early posterior/ventral fate specification in the vertebrate embryo   总被引:3,自引:0,他引:3  
Slit is expressed in the midline of the central nervous system both in vertebrates and invertebrates. In Drosophila, it is the midline repellent acting as a ligand for the Roundabout (Robo) protein, the repulsive receptor which is expressed on the growth cones of the commissural neurons. We have isolated cDNA fragments of the zebrafish slit2 and slit3 homologues and found that both genes start to be expressed by the midgastrula stage well before the axonogenesis begins in the nervous system, both in the axial mesoderm, and slit2 in the anterior margin of the neural plate and slit3 in the polster at the anterior end of the prechordal mesoderm. Later, expression of slit2 mRNA is detected mainly in midline structures such as the floor plate cells and the hypochord, and in the anterior margins of the neural plates in the zebrafish embryo, while slit3 expression is observed in the anterior margin of the prechordal plate, the floorplate cells in the hindbrain, and the motor neurons both in the hindbrain and the spinal cord. To study the role of Slit in early embryos, we overexpressed Slit2 in the whole embryos either by injection of its mRNA into one-cell stage embryos or by heat-shock treatment of the transgenic embryos which carries the slit2 gene under control of the heat-shock promoter. Overexpression of Slit2 in such ways impaired the convergent extension movement of the mesoderm and the rostral migration of the cells in the dorsal diencephalon and resulted in cyclopia. Our results shed light on a novel aspect of Slit function as a regulatory factor of mesodermal cell movement during gastrulation.  相似文献   

13.
The most rostral cephalic crest cells in the chick embryo first populate ubiquitously in the rostroventral head. Before the influx of crest cells, the ventral head ectoderm expresses Fgf8 in two domains that correspond to the future mandibular arch. Bmp4 is expressed rostral and caudal to these domains. The rostral part of the Bmp4 domain develops into the rostral end of the maxillary process that corresponds to the transition between the maxillomandibular and premandibular regions. Thus, the distribution patterns of FGF8 and BMP4 appear to foreshadow the maxillomandibular region in the head ectoderm. In the ectomesenchyme of the pharyngula embryo, expression patterns of some homeobox genes overlap the distribution of their upstream growth factors. Dlx1 and Barx1, the targets of FGF8, are expressed in the mandibular ectomesenchyme, and Msx1, the target of BMP4, in its distal regions. Ectopic applications of FGF8 lead to shifted expression of the target genes as well as repatterning of the craniofacial primordia and of the trigeminal nerve branches. Focal injection of a lipophilic dye, DiI, showed that this shift was at least in part due to the posterior transformation of the original premandibular ectomesenchyme into the mandible, caused by the changed distribution of FGF8 that defines the mandibular region. We conclude that FGF8 in the early ectoderm defines the maxillomandibular region of the prepharyngula embryo, through epithelial-mesenchymal interactions and subsequent upregulation of homeobox genes in the local mesenchyme. BMP4 in the ventral ectoderm appears to limit the anterior expression of Fgf8. Ectopic application of BMP4 consistently diminished part of the mandibular arch.  相似文献   

14.
The anterior midline tissue (AML) of the late gastrula mouse embryo comprises the axial mesendoderm and the ventral neuroectoderm of the prospective forebrain, midbrain and rostral hindbrain. In this study, we have investigated the morphogenetic role of defined segments of the AML by testing their inductive and patterning activity and by assessing the impact of their ablation on the patterning of the neural tube at the early-somite-stage. Both rostral and caudal segments of the AML were found to induce neural gene activity in the host tissue; however, the de novo gene activity did not show any regional characteristic that might be correlated with the segmental origin of the AML. Removal of the rostral AML that contains the prechordal plate resulted in a truncation of the head accompanied by the loss of several forebrain markers. However, the remaining tissues reconstituted Gsc and Shh activity and expressed the ventral forebrain marker Nkx2.1. Furthermore, analysis of Gsc-deficient embryos reveals that the morphogenetic function of the rostral AML requires Gsc activity. Removal of the caudal AML led to a complete loss of midline molecular markers anterior to the 4th somite. In addition, Nkx2.1 expression was not detected in the ventral neural tube. The maintenance and function of the rostral AML therefore require inductive signals emanating from the caudal AML. Our results point to a role for AML in the refinement of the anteroposterior patterning and morphogenesis of the brain.  相似文献   

15.
Retinoids, and in particular retinoic acid (RA), are known to induce posterior fates in neural tissue. However, alterations in retinoid signalling dramatically affect anterior development. Previous reports have demonstrated a late role for retinoids in patterning craniofacial and forebrain structures, but an earlier role in anterior patterning is not well understood. We show that enzymes involved in synthesizing retinoids are expressed in the avian hypoblast and in tissues directly involved in head patterning, such as anterior definitive endoderm and prechordal mesendoderm. We found that in the vitamin A-deficient (VAD) quail model, which lacks biologically active RA from the first stages of development, anterior endodermal markers such as Bmp2, Bmp7, Hex and the Wnt antagonist crescent are affected during early gastrulation. Furthermore, prechordal mesendodermal and prospective ventral telencephalic markers are expanded posteriorly, Shh expression in the axial mesoderm is reduced, and Bmp2 and Bmp7 are abnormally expressed in the ventral midline of the neural tube. At early somite stages, VAD embryos have increased cell death in ventral neuroectoderm and foregut endoderm, but normal cranial neural crest production, whereas at later stages extensive apoptosis occurs in head mesenchyme and ventral neuroectoderm. As a result, VAD embryos end up with a single and reduced telencephalic vesicle and an abnormally patterned diencephalon. Therefore, we propose that retinoids have a dual role in patterning the anterior forebrain during development. During early gastrulation, RA acts in anterior endodermal cells to modulate the anteroposterior (AP) positional identity of prechordal mesendodermal inductive signals to the overlying neuroectoderm. Later on, at neural pore closure, RA is required for patterning of the mesenchyme of the frontonasal process and the forebrain by modulating signalling molecules involved in craniofacial morphogenesis.  相似文献   

16.
The vertebrate cranial base is a complex structure composed of bone, cartilage and other connective tissues underlying the brain; it is intimately connected with development of the face and cranial vault. Despite its central importance in craniofacial development, morphogenesis and tissue origins of the cranial base have not been studied in detail in the mouse, an important model organism. We describe here the location and time of appearance of the cartilages of the chondrocranium. We also examine the tissue origins of the mouse cranial base using a neural crest cell lineage cell marker, Wnt1-Cre/R26R, and a mesoderm lineage cell marker, Mesp1-Cre/R26R. The chondrocranium develops between E11 and E16 in the mouse, beginning with development of the caudal (occipital) chondrocranium, followed by chondrogenesis rostrally to form the nasal capsule, and finally fusion of these two parts via the midline central stem and the lateral struts of the vault cartilages. X-Gal staining of transgenic mice from E8.0 to 10 days post-natal showed that neural crest cells contribute to all of the cartilages that form the ethmoid, presphenoid, and basisphenoid bones with the exception of the hypochiasmatic cartilages. The basioccipital bone and non-squamous parts of the temporal bones are mesoderm derived. Therefore the prechordal head is mostly composed of neural crest-derived tissues, as predicted by the New Head Hypothesis. However, the anterior location of the mesoderm-derived hypochiasmatic cartilages, which are closely linked with the extra-ocular muscles, suggests that some tissues associated with the visual apparatus may have evolved independently of the rest of the “New Head”.  相似文献   

17.
The morphology of the mammalian chondrocranium appears to differ significantly from those of other amniotes, since the former possesses uniquely developed brain and cranial sensory organs. In particular, a question has long remained unanswered as to the developmental and evolutionary origins of a cartilaginous nodule called the ala hypochiasmatica. In this study, we investigated the embryonic origin of skeletal elements in the murine orbitotemporal region by combining genetic cell lineage analysis with detailed morphological observation. Our results showed that the mesodermal embryonic environment including the ala hypochiasmatica, which appeared as an isolated mesodermal distribution in the neural crest-derived prechordal region, is formed as a part of the mesoderm that continued from the chordal region during early chondrocranial development. The mesoderm/neural crest cell boundary in the head mesenchyme is modified through development, resulting in the secondary mesodermal expansion to invade into the prechordal region. We thus revealed that the ala hypochiasmatica develops as the frontier of the mesodermal sheet stretched along the cephalic flexure. These results suggest that the mammalian ala hypochiasmatica has evolved from a part of the mesodermal primary cranial wall in ancestral amniotes. In addition, the endoskeletal elements in the orbitotemporal region, such as the orbital cartilage, suprapterygoid articulation of the palatoquadrate, and trabecula, some of which were once believed to represent primitive traits of amniotes and to be lost in the mammalian lineage, have been confirmed to exist in the mammalian cranium. Consequently, the mammalian chondrocranium can now be explained in relation to the pan-amniote cranial configuration.  相似文献   

18.
The distribution and migration of the cardiac neural crest was studied in chick embryos from stages 11 to 17 that were immunochemically stained in whole-mount and sectioned specimens with a monoclonal antibody, HNK-1. The following results were obtained: 1) The first phase of the migration in the cardiac crest follows the dorsolateral pathway beneath the ectoderm. 2) In the first site of arrest, the cardiac crest forms a longitudinal mass of neural-crest cells, called in the present study, the circumpharyngeal crest; this mass is located dorsolateral to the dorsal edge of the pericardium (pericardial dorsal horn) where splanchnic and somatic lateral mesoderm meet. 3) A distinctive strand of neural-crest cells, called the anterior tract, arises from the mid-otic level and ends in the circumpharyngeal crest. 4) By stage 16, after the degeneration of the first somite, another strand of neural-crest cells, called the posterior tract, appears dorsal to the circumpharyngeal crest. It forms an arch-like pathway along the anterior border of the second somite. 5) The seeding of the pharyngeal ectomesenchyme takes place before the formation of pharyngeal arches in the postotic area, i.e., the crest cells are seeded into the lateral body wall ventrally from the circumpharyngeal crest; and, by the ventral-ward regression of the pericardial dorsal horn, lateral expansion of pharyngeal pouch, and caudal regression of the pericardium, the crest cell population is pushed away by the pharyngeal pouch. Thus the pharyngeal arch ectomesenchyme is segregated. 6) By stage 14, at the occipital somite level, ventrolateral migration of the neural crest is observed within the anterior half of each somite. Some of these crest cells are continuous with the caudal portion of the circumpharyngeal crest. An early contribution to the enteric neuroblasts is apparent in this area.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号