共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell shape changes require the coordination of actin and microtubule cytoskeletons. The molecular mechanisms by which such coordination is achieved remain obscure, particularly in the context of epithelial cells within developing vertebrate embryos. We have identified a novel role for the actin-binding protein Shroom3 as a regulator of the microtubule cytoskeleton during epithelial morphogenesis. We show that Shroom3 is sufficient and also necessary to induce a redistribution of the microtubule regulator gamma-tubulin. Moreover, this change in gamma-tubulin distribution underlies the assembly of aligned arrays of microtubules that drive apicobasal cell elongation. Finally, experiments with the related protein, Shroom1, demonstrate that gamma-tubulin regulation is a conserved feature of this protein family. Together, the data demonstrate that Shroom family proteins govern epithelial cell behaviors by coordinating the assembly of both microtubule and actin cytoskeletons. 相似文献
2.
During development tissue deformations are essential for the generation of organs and to provide the final form of an organism. These deformations rely on the coordination of individual cell behaviours which have their origin in the modulation of subcellular activities. Here we explore the role endocytosis and recycling on tissue deformations that occur during dorsal closure of the Drosophila embryo. During this process the AS contracts and the epidermis elongates in a coordinated fashion, leading to the closure of a discontinuity in the dorsal epidermis of the Drosophila embryo. We used dominant negative forms of Rab5 and Rab11 to monitor the impact on tissue morphogenesis of altering endocytosis and recycling at the level of single cells. We found different requirements for endocytosis (Rab5) and recycling (Rab11) in dorsal closure, furthermore we found that the two processes are differentially used in the two tissues. Endocytosis is required in the AS to remove membrane during apical constriction, but is not essential in the epidermis. Recycling is required in the AS at early stages and in the epidermis for cell elongation, suggesting a role in membrane addition during these processes. We propose that the modulation of the balance between endocytosis and recycling can regulate cellular morphology and tissue deformations during morphogenesis. 相似文献
3.
4.
Zhang C Mallery EL Schlueter J Huang S Fan Y Brankle S Staiger CJ Szymanski DB 《The Plant cell》2008,20(4):995-1011
During polarized growth and tissue morphogenesis, cells must reorganize their cytoplasm and change shape in response to growth signals. Dynamic polymerization of actin filaments is one cellular component of polarized growth, and the actin-related protein 2/3 (ARP2/3) complex is an important actin filament nucleator in plants. ARP2/3 alone is inactive, and the Arabidopsis thaliana WAVE complex translates Rho-family small GTPase signals into an ARP2/3 activation response. The SCAR subunit of the WAVE complex is the primary activator of ARP2/3, and plant and vertebrate SCARs are encoded by a small gene family. However, it is unclear if SCAR isoforms function interchangeably or if they have unique properties that customize WAVE complex functions. We used the Arabidopsis distorted group mutants and an integrated analysis of SCAR gene and protein functions to address this question directly. Genetic results indicate that each of the four SCARs functions in the context of the WAVE-ARP2/3 pathway and together they define the lone mechanism for ARP2/3 activation. Genetic interactions among the scar mutants and transgene complementation studies show that the activators function interchangeably to meet the threshold for ARP2/3 activation in the cell. Interestingly, double, triple, and quadruple mutant analyses indicate that individual SCAR genes vary in their relative importance depending on the cell type, tissue, or organ that is analyzed. Differences among SCARs in mRNA levels and the biochemical efficiency of ARP2/3 activation may explain the functional contributions of individual genes. 相似文献
5.
Strickland P Shin GC Plump A Tessier-Lavigne M Hinck L 《Development (Cambridge, England)》2006,133(5):823-832
Development of many organs, including the mammary gland, involves ductal morphogenesis. Mammary ducts are bi-layered tubular structures comprising an outer layer of cap/myoepithelial cells (MECs) and an inner layer of luminal epithelial cells (LECs). Slit2 is expressed by cells in both layers, with secreted SLIT2 broadly distributed throughout the epithelial compartment. By contrast, Robo1 is expressed specifically by cap/MECs. Loss-of-function mutations in Slit2 and Robo1 yield similar phenotypes, characterized by disorganized end buds (EBs) reminiscent of those present in Ntn1(-/-) glands, suggesting that SLIT2 and NTN1 function in concert during mammary development. Analysis of Slit2(-/-);Ntn1(-/-) glands demonstrates an enhanced phenotype that extends through the ducts and is characterized by separated cell layers and occluded lumens. Aggregation assays show that Slit2(-/-);Ntn1(-/-) cells, in contrast to wild-type cells, do not form bi-layered organoids, a defect rescued by addition of SLIT2. NTN1 has no effect alone, but synergistically enhances this rescue. Thus, our data establish a novel role for SLIT2 as an adhesive cue, acting in parallel with NTN1 to generate cell boundaries along ducts during bi-layered tube formation. 相似文献
6.
Apoptosis is a strictly regulated and genetically encoded cell 'suicide' that may be triggered by cytokines, depletion of growth factors or certain chemicals. It is morphologically characterized by severe alterations in cell shape like cell shrinkage and disintegration of cell-cell contacts. We applied a non-invasive electrochemical technique referred to as electric cell-substrate impedance sensing (ECIS) in order to monitor the apoptosis-induced changes in cell shape in an integral and quantitative fashion with a time resolution in the order of minutes. In ECIS the cells are grown directly on the surface of small gold-film electrodes (d = 2 mm). From readings of the electrical impedance of the cell-covered electrode, performed with non-invasive, low amplitude sensing voltages, it is possible to deduce alterations in cell-cell and cell-substrate contacts. To improve the sensitivity of this impedance assay we used endothelial cells derived from cerebral micro-vessels as cellular model systems since these are well known to express electrically tight intercellular junctions. Apoptosis was induced by cycloheximide (CHX) and verified by biochemical and cytological assays. The time course of cell shape changes was followed with unprecedented time resolution by impedance readings at 1 kHz and correlated with biochemical parameters. From impedance readings along a broad frequency range of 1-10(6) Hz we could assign the observed impedance changes to alterations on the subcellular level. We observed that disassembly of barrier-forming tight junctions precedes changes in cell-substrate contacts and correlates strongly with the time course of protease activation. 相似文献
7.
Asymmetric cell division is a mechanism for achieving cellular diversity. In C. elegans, many asymmetric cell divisions are controlled by the Wnt-MAPK pathway through POP-1/TCF. It is poorly understood, however, how POP-1 determines the specific fates of daughter cells. We found that nob-1/Hox, ceh-20/Pbx, and a Meis-related gene, psa-3, are required for asymmetric division of the T hypodermal cell. psa-3 expression was asymmetric between the T cell daughters, and it was regulated by POP-1 through a POP-1 binding site in the psa-3 gene. psa-3 expression was also regulated by NOB-1 and CEH-20 through a NOB-1 binding sequence in a psa-3 intron. PSA-3 can bind CEH-20 and function after the T cell division to promote the proper fate of the daughter cell. These results indicate that cooperation between Wnt signaling and a Hox protein functions to determine the specific fate of a daughter cell. 相似文献
8.
Left-right asymmetry of internal organs is widely distributed in the animal kingdom. The chick and mouse embryos have served as important model organisms to analyze the mechanisms underlying the establishment of the left-right axis. In the chick embryo many genes have been found to be asymmetrically expressed in and around the node, while the same genes in the mouse show symmetric expression patterns. In the mouse there is strong evidence for an establishment of left-right asymmetry through nodal cilia. In contrast, in the chick and in many other organisms left-right asymmetry is probably generated by an early-acting event involving membrane depolarization. In both birds and mammals a conserved Nodal-Lefty-Pitx2 module exists that controls many aspects of asymmetric morphogenesis. This review also gives examples of divergent mechanisms of establishing asymmetric organ formation. Thus there is ample evidence for conserved and non-conserved strategies to generate asymmetry in birds and mammals. 相似文献
9.
10.
Pitx2, a paired-related homeobox gene that encodes multiple isoforms, is the gene mutated in the haploinsufficient Rieger Syndrome type 1 that includes dental, ocular and abdominal wall anomalies as cardinal features. Previous analysis of the craniofacial phenotype of Pitx2-null mice revealed that Pitx2 was both a positive regulator of Fgf8 and a repressor of Bmp4-signaling, suggesting that Pitx2 may function as a coordinator of craniofacial signaling pathways. We show that Pitx2 isoforms have interchangeable functions in branchial arches and that Pitx2 target pathways respond to small changes in total Pitx2 dose. Analysis of Pitx2 allelic combinations that encode varying levels of Pitx2 showed that repression of Bmp signaling requires high Pitx2 while maintenance of Fgf8 signaling requires only low Pitx2. Fate-mapping studies with a Pitx2 cre recombinase knock in allele revealed that Pitx2 daughter cells are migratory and move aberrantly in the craniofacial region of Pitx2 mutant embryos. Our data reveal that Pitx2 function depends on total Pitx2 dose and rule out the possibility that the differential sensitivity of target pathways was a consequence of isoform target specificity. Moreover, our results uncover a new function of Pitx2 in regulation of cell motility in craniofacial development. 相似文献
11.
Palate morphogenesis. III. Changes in cell shape and orientation during shelf elevation 总被引:1,自引:0,他引:1
The process of palate shelf elevation has been analyzed by light microscopy in mouse embryos cultured in vitro. The observations presented correlate changes in cell shape and orientation in the palate with the morphogenetic movement of the shelf. These studies suggest that in addition to any physical-chemical force elevating the shelf an active contraction of specific palate cells could also aid the process. Contribution to elevation could be derived from masses of contracting cells from the previously described non-muscle contractile systems in posterior (region 2) and mid-anterior (region 3) palate as well as other peripheral mesenchymal cells. Finally, elongation and contraction of the tongue side epithelial cells may also play a role in palate elevation. 相似文献
12.
Identification of a Wnt/Dvl/beta-Catenin --> Pitx2 pathway mediating cell-type-specific proliferation during development 总被引:5,自引:0,他引:5
Kioussi C Briata P Baek SH Rose DW Hamblet NS Herman T Ohgi KA Lin C Gleiberman A Wang J Brault V Ruiz-Lozano P Nguyen HD Kemler R Glass CK Wynshaw-Boris A Rosenfeld MG 《Cell》2002,111(5):673-685
13.
14.
Toshinori Matsui Takashi Watanabe Kenji Matsuzawa Mai Kakeno Nobumasa Okumura Ikuko Sugiyama Norimichi Itoh Kozo Kaibuchi 《Molecular biology of the cell》2015,26(4):751-761
The organization of the Golgi apparatus is essential for cell polarization and its maintenance. The polarity regulator PAR complex (PAR3, PAR6, and aPKC) plays critical roles in several processes of cell polarization. However, how the PAR complex participates in regulating the organization of the Golgi remains largely unknown. Here we demonstrate the functional cross-talk of the PAR complex with CLASP2, which is a microtubule plus-end–tracking protein and is involved in organizing the Golgi ribbon. CLASP2 directly interacted with PAR3 and was phosphorylated by aPKC. In epithelial cells, knockdown of either PAR3 or aPKC induced the aberrant accumulation of CLASP2 at the trans-Golgi network (TGN) concomitantly with disruption of the Golgi ribbon organization. The expression of a CLASP2 mutant that inhibited the PAR3-CLASP2 interaction disrupted the organization of the Golgi ribbon. CLASP2 is known to localize to the TGN through its interaction with the TGN protein GCC185. This interaction was inhibited by the aPKC-mediated phosphorylation of CLASP2. Furthermore, the nonphosphorylatable mutant enhanced the colocalization of CLASP2 with GCC185, thereby perturbing the Golgi organization. On the basis of these observations, we propose that PAR3 and aPKC control the organization of the Golgi through CLASP2 phosphorylation. 相似文献
15.
From function to shape: a novel role of a formin in morphogenesis of the fungus Ashbya gossypii
下载免费PDF全文

Schmitz HP Kaufmann A Köhli M Laissue PP Philippsen P 《Molecular biology of the cell》2006,17(1):130-145
Morphogenesis of filamentous ascomycetes includes continuously elongating hyphae, frequently emerging lateral branches, and, under certain circumstances, symmetrically dividing hyphal tips. We identified the formin AgBni1p of the model fungus Ashbya gossypii as an essential factor in these processes. AgBni1p is an essential protein apparently lacking functional overlaps with the two additional A. gossypii formins that are nonessential. Agbni1 null mutants fail to develop hyphae and instead expand to potato-shaped giant cells, which lack actin cables and thus tip-directed transport of secretory vesicles. Consistent with the essential role in hyphal development, AgBni1p locates to tips, but not to septa. The presence of a diaphanous autoregulatory domain (DAD) indicates that the activation of AgBni1p depends on Rho-type GTPases. Deletion of this domain, which should render AgBni1p constitutively active, completely changes the branching pattern of young hyphae. New axes of polarity are no longer established subapically (lateral branching) but by symmetric divisions of hyphal tips (tip splitting). In wild-type hyphae, tip splitting is induced much later and only at much higher elongation speed. When GTP-locked Rho-type GTPases were tested, only the young hyphae with mutated AgCdc42p split at their tips, similar to the DAD deletion mutant. Two-hybrid experiments confirmed that AgBni1p interacts with GTP-bound AgCdc42p. These data suggest a pathway for transforming one axis into two new axes of polar growth, in which an increased activation of AgBni1p by a pulse of activated AgCdc42p stimulates additional actin cable formation and tip-directed vesicle transport, thus enlarging and ultimately splitting the polarity site. 相似文献
16.
As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first becomes active in prophase, when it is exported from the nucleus into the cytoplasm, activating RhoA to induce the formation of a mechanically stiff and rounded metaphase cortex. Then, at anaphase, binding to RacGAP1 at the spindle midzone repositions Ect2 to induce local actomyosin ring formation. Ect2 localization therefore defines the stage-specific changes in actin cortex organization critical for accurate cell division. 相似文献
17.
Lozano-Velasco E Contreras A Crist C Hernández-Torres F Franco D Aránega AE 《Developmental biology》2011,(1):165-178
Pitx2 is a paired-related homeobox gene that is expressed in muscle progenitors during myogenesis. We have previously demonstrated that overexpression of Pitx2c isoform in myoblasts maintained these cells with a high proliferative capacity and completely blocked terminal differentiation by inducing high Pax3 expression levels (Martinez et al., 2006). We now report that Pitx2c-mediated proliferation vs. differentiation effect is maintained during in vivo myogenesis. In vivo Pitx2c loss of function leads to a decrease in Pax3+/Pax7− cell population in the embryo accompanied by an increase of Pax3+/Pax7+ cells. Pitx2c transient-transfection experiments further supported the notion that Pitx2c can modulate Pax3/Pax7 expression. Pitx2c but not Pitx3 controls Pax3/Pax7 expression, although redundant roles are elicited at the terminal myoblast differentiation. Contrary to Pitx2c, Pitx3 does not regulate cell proliferation or Pax3 expression, demonstrating the specificity of Pitx2c mediating these actions in myoblasts. Furthermore we demonstrated that Pitx2c modulates Pax3 by repressing miR27 expression and that Pax3-miR-27 modulation mediated by Pitx2c is independent of Pitx2c effects on cell proliferation. Therefore, this study sheds light on previously unknown function of Pitx2c balancing the different myogenic progenitor populations during myogenesis. 相似文献
18.
Apical cell shape changes during Drosophila imaginal leg disc elongation: a novel morphogenetic mechanism 总被引:3,自引:0,他引:3
Imaginal discs of Drosophila are simple epithelial tissues that undergo dramatic changes in shape during metamorphosis, including elongation to form adult appendages such as legs and wings. We have examined the cellular basis of leg disc morphogenesis by staining filamentous actin to outline cell boundaries in discs and observing cell shapes with scanning confocal laser microscopy (SCLM). Surprisingly, we found that prior to the onset of morphogenesis, cells in the dorsal-lateral regions of leg discs are compressed in the proximal-distal axis and greatly elongated circumferentially. These cells are also asymmetric in the apical-basal axis, being more elongated in the apical-most region of the cell than they are subapically, and frequently contacting different sets of neighbors apically and basally. Elongated cells were first observed in early third instar discs, and persisted through several rounds of cell division as the discs matured. During appendage elongation in vivo and trypsin-accelerated elongation in vitro, these highly asymmetric cells became isometric. As the apical cell profiles changed shape, apical and basal cell contacts came into register. Measurements of apical cell dimensions suggest that changes in cell shape account for most of the elongation in the basitarsal and tibial leg segments between 0 and 6 h after puparium formation (AP). The conversion of a stable population of anisometric cells to isometric dimensions constitutes a novel mechanism for altering the proportions of an epithelial sheet during development. 相似文献
19.
M C Holley 《Tissue & cell》1985,17(3):321-334
Cilia projecting from the surfaces of highly contractile myoepithelia in the sea anemone Metridium senile maintain their basal orientation, and their ability to propel water, at different states of mesentery contraction, despite substantial changes of myoepithelial cell diameter and length. The ciliary basal apparatus in each monociliated myoepithelial cell is structurally well adapted to provide a stable anchorage for the cilium whilst compensating for these shape changes. It is composed of a distal centriole (basal body), a proximal centriole, a striated rootlet 2-3 micron long which is composed of a bundle of 4-6 nm filaments, and an arched rootlet, also striated, which is composed of a relatively loose bundle of 9-11 nm filaments. A single basal foot projects from the side of the distal centriole in the same direction as the path of the cilium during an effective-stroke; its tip is a focus for many microtubules that radiate outward in all directions toward the cell membrane. The arched rootlet forms a single arch in the cell apex, also in the same plane as the path of the cilium during an effective-stroke. The central axis of the basal apparatus, that is through the distal centriole and the striated rootlet, passes through the apex of the arch. The arched rootlet is apparently flexible so that it can increase or decrease its span as the cell increases or decreases in diameter. In pharnyx and siphonoglyph cells from M. senile, which do not undergo great changes in diameter or length, there is no arched rootlet, and the striated rootlet is much longer. The broad structural diversity of the metazoan ciliary basal apparatus must to a large extent be related to the diversity of the structural and mechanical properties of the cells in which it occurs. 相似文献
20.
Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling 总被引:2,自引:0,他引:2
Remodeling of epithelial sheets plays important roles in animal morphogenesis. Shroom3 is known to regulate the apical constriction of epithelial cells. Here, we show that Shroom3 binds ROCKs and recruits them to the epithelial apical junctions. We identified the Shroom3-binding site (RII-C1) on ROCKs, and found that RII-C1 could antagonize the Shroom3-ROCK interaction, interfering with the action of Shroom3 on cell morphology. In the invaginating neural plate/tube, Shroom3 colocalized with ROCKs at the apical junctions; Shroom3 depletion or RII-C1 expression in the tube removed these apically localized ROCKs, and concomitantly blocked neural tube closure. Closing neural plate exhibited peculiar cell assemblies, including rosette formation, as well as a planar-polarized distribution of phosphorylated myosin regulatory light chain, but these were abolished by ROCK inhibition or RII-C1 expression. These results demonstrate that the Shroom3-ROCK interaction is crucial for the regulation of epithelial and neuroepithelial cell arrangement and remodeling. 相似文献