首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two DNA fragments displaying ARS activity on plasmids in the yeast Yarrowia lipolytica have previously been cloned and shown to harbor centromeric sequences (P. Fournier, A. Abbas, M. Chasles, B. Kudla, D. M. Ogrydziak, D. Yaver, J.-W. Xuan, A. Peito, A.-M. Ribet, C. Feynerol, F. He, and C. Gaillardin, Proc. Natl. Acad. Sci. USA 90:4912-4916, 1993; and P. Fournier, L. Guyaneux, M. Chasles, and C. Gaillardin, Yeast 7:25-36, 1991). We have used the integration properties of centromeric sequences to show that all Y. lipolytica ARS elements so far isolated are composed of both a replication origin and a centromere. The sequence and the distance between the origin and centromere do not seem to play a critical role, and many origins can function in association with one given centromere. A centromeric plasmid can therefore be used to clone putative chromosomal origins coming from several genomic locations, which confer the replicative property on the plasmid. The DNA sequences responsible for initiation in plasmids are short (several hundred base pairs) stretches which map close to or at replication initiation sites in the chromosome. Their chromosomal deletion abolishes initiation, but changing their chromosomal environment does not.  相似文献   

2.
Autonomously replicating sequences (ARSs) in the yeast Yarrowia lipolytica require two components: an origin of replication (ORI) and centromere (CEN) DNA, both of which are necessary for extrachromosomal maintenance. To investigate this cooperation in more detail, we performed a screen for genomic sequences able to confer high frequency of transformation to a plasmid-borne ORI. Our results confirm a cooperation between ORI and CEN sequences to form an ARS, since all sequences identified in this screen displayed features of centromeric DNA and included the previously characterized CEN1-1, CEN3-1 and CEN5-1 fragments. Two new centromeric DNAs were identified as they are unique, map to different chromosomes (II and IV) and induce chromosome breakage after genomic integration. A third sequence, which is adjacent to, but distinct from the previously characterized CEN1-1 region was isolated from chromosome I. Although these CEN sequences do not share significant sequence similarities, they display a complex pattern of short repeats, including conserved blocks of 9 to 14 bp and regions of dyad symmetry. Consistent with their A+T-richness and strong negative roll angle, Y. lipolytica CEN-derived sequences, but not ORIs, were capable of binding isolated Drosophila nuclear scaffolds. However, a Drosophila scaffold attachment region that functions as an ARS in other yeasts was unable to confer autonomous replication to an ORI-containing plasmid. Deletion analysis of CEN1-1 showed that the sequences responsible for the induction of chromosome breakage could be eliminated without compromising extrachromosomal maintenance. We propose that, while Y. lipolytica CEN DNA is essential for plasmid maintenance, this function can be supplied by several sub-fragments which, together, form the active chromosomal centromere. This complex organization of Y. lipolytica centromeres is reminiscent of the regional structures described in the yeast Schizosaccharomyces pombe or in multicellular eukaryotes.  相似文献   

3.
DNA replication origins (ORI) in Schizosaccharomyces pombe colocalize with adenine and thymine (A+T)‐rich regions, and earlier analyses have established a size from 0.5 to over 3 kb for a DNA fragment to drive replication in plasmid assays. We have asked what are the requirements for ORI function in the chromosomal context. By designing artificial ORIs, we have found that A+T‐rich fragments as short as 100 bp without homology to S. pombe DNA are able to initiate replication in the genome. On the other hand, functional dissection of endogenous ORIs has revealed that some of them span a few kilobases and include several modules that may be as short as 25–30 contiguous A+Ts capable of initiating replication from ectopic chromosome positions. The search for elements with these characteristics across the genome has uncovered an earlier unnoticed class of low‐efficiency ORIs that fire late during S phase. These results indicate that ORI specification and dynamics varies widely in S. pombe, ranging from very short elements to large regions reminiscent of replication initiation zones in mammals.  相似文献   

4.
The ura4 replication origin region, which is located near the ura4 gene on chromosome III of the fission yeast, Schizosaccharomyces pombe, contains multiple initiation sites. We have used 2D gel electrophoretic replicon mapping methods to study the distribution of these initiation sites, and have found that they are concentrated near three ARS elements (stretches of DNA which permit autonomous plasmid replication). To determine the roles of these ARS elements in the function of the ura4 origin region, we deleted either one or two of them from the chromosome and then assessed the consequences of the deletions by 2D gel electrophoresis. The results suggest that each of the three ARS elements is responsible for the initiation events in its vicinity and that the ARS elements interfere with each other in a hierarchical fashion. It is possible that the large initiation zones of animal cells are similarly composed of multiple mutually interfering origins.  相似文献   

5.
A 36-bp human consensus sequence (CCTMDAWKSGBYTSMAAWTWBCMYTTRSCAAATTCC) is capable of supporting autonomous replication of a plasmid after transfection into eukaryotic cells. After transfection and in vitro DNA replication, replicated plasmid DNA containing a mixture of oligonucleotides of this consensus was found to reiterate the consensus. Initiation of DNA replication in vitro occurs within the consensus. One version, A3/4, in pYACneo, could be maintained under selection in HeLa cells, unrearranged and replicating continuously for >170 cell doublings. Stability of plasmid without selection was high (> or =0.9/cell/generation). Homologs of the consensus are found consistently at mammalian chromosomal sites of initiation and within CpG islands. Versions of the consensus function as origins of DNA replication in normal and malignant human cells, immortalized monkey and mouse cells, and normal cow, chicken, and fruit fly cells. Random mutagenesis studies suggest an internal 20-bp consensus sequence of the 36 bp may be sufficient to act as a core origin element. This cis-element consensus sequence is an opportunity for focused analyses of core origin elements and the regulation of initiation of DNA replication.  相似文献   

6.
A yeast autonomously replicating sequence, ARS305, shares essential components with a chromosome III replicator, ORI305. Known components include an ARS consensus sequence (ACS) element, presumed to bind the origin recognition complex (ORC), and a broad 3'-flanking sequence which contains a DNA unwinding element. Here linker substitution mutagenesis of ARS305 and analysis of plasmid mitotic stability identified three short sequence elements within the broad 3'-flanking sequence. The major functional element resides directly 3' of the ACS and the two remaining elements reside further downstream, all within non-conserved ARS sequences. To determine the contribution of the elements to replication origin function in the chromosome, selected linker mutations were transplaced into the ORI305 locus and two-dimensional gel electrophoresis was used to analyze replication bubble formation and fork directions. Mutation of the major functional element identified in the plasmid mitotic stability assay inactivated replication origin function in the chromosome. Mutation of each of the two remaining elements diminished both plasmid ARS and chromosomal origin activities to similar levels. Thus multiple DNA elements identified in the plasmid ARS are determinants of replication origin function in the natural context of the chromosome. Comparison with two other genetically defined chromosomal replicators reveals a conservation of functional elements known to bind ORC, but no two replicators are identical in the arrangement of elements downstream of ORC binding elements or in the extent of functional sequences adjacent to the ACS.  相似文献   

7.
Replication of mammalian chromosomes depends on the activation of a large number of origins of DNA replication distributed along the chromosomes. We have focused our attention on a human DNA region, named ARSH1, localized to chromosome 2, that had been previously shown to act as an episomal origin in the yeast Saccharomyces cerevisiae. In the present study we have used a nascent strand DNA abundance assay to map initiation sites for DNA replication in in vivo human chromosomes around a 5 kb region encompassing ARSH1. This analysis applied to a 1-1.4 kb nascent DNA strand fraction isolated from normal skin fibroblasts revealed the presence of two major initiations sites surrounding the ARSH1 region. With an equivalent DNA fraction obtained from HeLa cells, in addition to these sites, a broad initiation profile was observed which included the ARSH1 region. This DNA region however was not sufficient to support episomal replication of an ARSH1-containing plasmid transfected into HeLa cells.  相似文献   

8.
Eukaryotic chromosomal DNA replication is initiated by a highly conserved set of proteins that interact with cis-acting elements on chromosomes called replicators. Despite the conservation of replication initiation proteins, replicator sequences show little similarity from species to species in the small number of organisms that have been examined. Examination of replicators in other species is likely to reveal common features of replicators. We have examined a Kluyeromyces lactis replicator, KARS12, that functions as origin of DNA replication on plasmids and in the chromosome. It contains a 50-bp region with similarity to two other K. lactis replicators, KARS101 and the pKD1 replication origin. Replacement of the 50-bp sequence with an EcoRI site completely abrogated the ability of KARS12 to support plasmid and chromosomal DNA replication origin activity, demonstrating this sequence is a common feature of K. lactis replicators and is essential for function, possibly as the initiator protein binding site. Additional sequences up to 1 kb in length are required for efficient KARS12 function. Within these sequences are a binding site for a global regulator, Abf1p, and a region of bent DNA, both of which contribute to the activity of KARS12. These elements may facilitate protein binding, protein/protein interaction and/or nucleosome positioning as has been proposed for other eukaryotic origins of DNA replication.  相似文献   

9.
Using two-dimensional agarose gel electrophoresis, we determined the replication map of a 61-kb circular derivative of Saccharomyces cerevisiae chromosome III. The three sites of DNA replication initiation on the ring chromosome are specific and coincide with ARS elements. The three origins are active to different degrees; two are used > 90% of the time, whereas the third is used only 10-20% of the time. The specificity of these origins is shown by the fact that only ARS elements were competent for origin function, and deletion of one of the ARS elements removed the corresponding replication origin. The activity of the least active origin was not increased by deletion of the nearby highly active origin, demonstrating that the highly active origin does not repress function of the relatively inactive origin. Replication termination on the ring chromosome does not occur at specific sites but rather occurs over stretches of DNA ranging from 3 to 10 kb. A new region of termination was created by altering the sites of initiation. The position of the new termination site indicates that termination is not controlled by specific cis-acting DNA sequences, but rather that replication termination is determined primarily by the positions at which replication initiates. In addition, two sites on the ring chromosome were found to slow the progression of replication forks through the molecule: one is at the centromere and one at the 3' end of a yeast transposable element.  相似文献   

10.
In eukaryotic chromosomes, DNA replication initiates at multiple origins. Large inter-origin gaps arise when several adjacent origins fail to fire. Little is known about how cells cope with this situation. We created a derivative of Saccharomyces cerevisiae chromosome III lacking all efficient origins, the 5ORIΔ-ΔR fragment, as a model for chromosomes with large inter-origin gaps. We used this construct in a modified synthetic genetic array screen to identify genes whose products facilitate replication of long inter-origin gaps. Genes identified are enriched in components of the DNA damage and replication stress signaling pathways. Mrc1p is activated by replication stress and mediates transduction of the replication stress signal to downstream proteins; however, the response-defective mrc1(AQ) allele did not affect 5ORIΔ-ΔR fragment maintenance, indicating that this pathway does not contribute to its stability. Deletions of genes encoding the DNA-damage-specific mediator, Rad9p, and several components shared between the two signaling pathways preferentially destabilized the 5ORIΔ-ΔR fragment, implicating the DNA damage response pathway in its maintenance. We found unexpected differences between contributions of components of the DNA damage response pathway to maintenance of ORIΔ chromosome derivatives and their contributions to DNA repair. Of the effector kinases encoded by RAD53 and CHK1, Chk1p appears to be more important in wild-type cells for reducing chromosomal instability caused by origin depletion, while Rad53p becomes important in the absence of Chk1p. In contrast, RAD53 plays a more important role than CHK1 in cell survival and replication fork stability following treatment with DNA damaging agents and hydroxyurea. Maintenance of ORIΔ chromosomes does not depend on homologous recombination. These observations suggest that a DNA-damage-independent mechanism enhances ORIΔ chromosome stability. Thus, components of the DNA damage response pathway contribute to genome stability, not simply by detecting and responding to DNA template damage, but also by facilitating replication of large inter-origin gaps.  相似文献   

11.
Autonomously replicating sequence (ARS) elements function as plasmid replication origins. Our studies of the H4 ARS and ARS307 have established the requirement for a DNA unwinding element (DUE), a broad easily-unwound sequence 3' to the essential consensus that likely facilitates opening of the origin. In this report, we examine the intrinsic ease of unwinding a variety of ARS elements using (1) a single-strand-specific nuclease to probe for DNA unwinding in a negatively-supercoiled plasmid, and (2) a computer program that calculates DNA helical stability from the nucleotide sequence. ARS elements that are associated with replication origins on chromosome III are nuclease hypersensitive, and the helical stability minima correctly predict the location and hierarchy of the hypersensitive sites. All well-studied ARS elements in which the essential consensus sequence has been identified by mutational analysis contain a 100-bp region of low helical stability immediately 3' to the consensus, as do ARS elements created by mutation within the prokaryotic M13 vector. The level of helical stability is, in all cases, below that of ARS307 derivatives inactivated by mutations in the DUE. Our findings indicate that the ease of DNA unwinding at the broad region directly 3' to the ARS consensus is a conserved property of yeast replication origins.  相似文献   

12.
13.
14.
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.  相似文献   

15.
We have identified five autonomously replicating sequences (ARSs) in a 100 kbp region of the Schizosaccharomyces pombe chromosome II. Analyses of replicative intermediates of the chromosome DNA by neutral/neutral two-dimensional gel electrophoresis demonstrated that at least three of these ARS loci operate as chromosomal replication origins. One of the loci,ori2004, was utilized in almost every cell cycle, while the others were used less frequently. The frequency of initiation from the respective chromosomal replication origin was found to be roughly proportional to the efficiency of autonomous replication of the corresponding ARS plasmid. Replication from ori2004 was initiated within a distinct region almost the same as that for replication of the ARS plasmid. These results showed that the ori2004 region of approximately 3 kbp contains all the cis elements essential for initiation of chromosome replication.  相似文献   

16.
The plasmid R6K contains three distinct origins of replication: alpha, beta, and gamma. The gamma sequence is essential in cis and acts as an enhancer that activates the distant alpha and beta origins. R6K therefore represents a favorable procaryotic model system with which to unravel the biochemical mechanisms underlying selective origin activation, particularly activation involving distant sites on the same chromosome. We have discovered that plasmids containing the origins alpha and gamma required the Escherichia coli DnaA initiator protein in addition to the R6K-encoded initiator protein, Pi, and other host replisomal proteins for their maintenance in vivo. Plasmids initiating replication from origin beta required only the Pi initiator protein and other host replisomal proteins. We have exploited the differential requirement for the DnaA protein by origins gamma and beta to selectively study and localize the minimal origin beta sequences by deletion analysis as one test of a looping model of origin activation. A 64-bp region spanning the extreme -COOH terminal coding sequence of the Pi protein was found to be essential for replication in vivo in the absence of DnaA protein, consistent with the approximate physical location of the beta origin. Replication emanating from origin beta could be abolished in vivo by deletion of the 9-bp target site for Pi protein-mediated DNA looping between the gamma origin/enhancer and the distant beta origin. Electron microscopy of nascent replication intermediates generated in vivo directly confirmed our genetic localization of the beta origin. Our results strongly suggest that activation of the beta origin by a distant replication enhancer element requires a small target sequence essential for initiator protein-mediated DNA looping.  相似文献   

17.
The putative replication origin of Azotobacter vinelandii was cloned as an autonomously replicating fragment after ligation to an antibiotic resistance cartridge. The resulting plasmids could be isolated and labelled by Southern hybridisation with the antibiotic resistance cartridge as probe and also visualised by electron microscopy. These plasmids integrated into the chromosome after a few generations, even in the recA mutant of A. vinelandii. The integrated copy of the plasmid was re-isolated from the chromosome and the DNA and its subfragments were cloned in the plasmid vector pBR322. A 200-bp DNA fragment was sufficient to allow the replication of pBR322 in an Escherichia coli polA strain. Electron microscopic analysis of this plasmid showed that replication initiated mostly within the A. vinelandii DNA fragment. The nucleotide sequence of the putative replication origin and its flanking regions was determined. In the sequence of the 200-bp fragment many of the distinctive features found in other replication origins are lacking. A greater variation from the consensus DnaA binding sequence was observed in A. vinelandii. Direct sequencing of the relevant genomic fragment was also carried after amplifying it from A. vinelandii chromosomal DNA by PCR. This confirmed that no rearrangements had taken place while the cloned fragment was resident in E. coli. It was shown by hybridisation that the 200-bp chromosomal origin fragment of A. vinelandii was present in three other field strains of Azotobacter spp.  相似文献   

18.
R Bernander  M Krabbe    K Nordstrm 《The EMBO journal》1992,11(12):4481-4487
We have previously constructed Escherichia coli strains in which an R1 plasmid is integrated into the origin of chromosome replication, oriC. In such intR1 strains, oriC is inactive and initiation of chromosome replication instead takes place at the integrated R1 origin. Due to the large size of the chromosome, replication intermediates generated at the R1 origin in these strains are considerably more long-lived than those in unintegrated R1 plasmids. We have taken advantage of this and performed primer extensions on total DNA isolated from intR1 strains, and mapped the free 5' DNA ends that were generated as replication intermediates during R1 replication in vivo. The sensitivity of the mapping was considerably improved by the use of a repeated primer extension method (RPE). The free DNA ends were assumed to represent normal in vivo start sites for leading strand DNA synthesis in plasmid R1. The ends were mapped to a short region approximately 380 bp away from the R1 minimal origin, and the positions agreed well with previous in vitro mappings. The same start positions were also utilized in the absence of the DnaA protein, indicating that DnaA is not required for determination of the position at which DNA synthesis starts during initiation of replication at the R1 origin.  相似文献   

19.
Eukaryotic DNA replication initiates from multiple sites on each chromosome called replication origins (origins). In the budding yeast Saccharomyces cerevisiae, origins are defined at discrete sites. Regular spacing and diverse firing characteristics of origins are thought to be required for efficient completion of replication, especially in the presence of replication stress. However, a S. cerevisiae chromosome III harboring multiple origin deletions has been reported to replicate relatively normally, and yet how an origin-deficient chromosome could accomplish successful replication remains unknown. To address this issue, we deleted seven well-characterized origins from chromosome VI, and found that these deletions do not cause gross growth defects even in the presence of replication inhibitors. We demonstrated that the origin deletions do cause a strong decrease in the binding of the origin recognition complex. Unexpectedly, replication profiling of this chromosome showed that DNA replication initiates from non-canonical loci around deleted origins in yeast. These results suggest that replication initiation can be unexpectedly flexible in this organism.  相似文献   

20.
Mammalian DNA replication origins localize to sites that range from base pairs to tens of kilobases. A regular distribution of initiations in individual cell cycles suggests that only a limited number of these numerous potential start sites are converted into activated origins. Origin interference can silence redundant origins; however, it is currently unknown whether interference participates in spacing functional human initiation events. By using a novel hybridization strategy, genomic Morse code, on single combed DNA molecules from primary keratinocytes, we report the initiation sites present on 1.5 Mb of human chromosome 14q11.2. We confirm that initiation zones are widespread in human cells, map to intergenic regions, and contain sequence motifs found at other mammalian initiation zones. Origins used per cell cycle are less abundant than the potential sites of initiation, and their limited use increases the spacing between initiation events. Between-zone interference decreases in proportion to the distance from the active origin, whereas within-zone interference is 100% efficient. These results identify a hierarchical organization of origin activity in human cells. Functional origins govern the probability that nearby origins will fire in the context of multiple potential start sites of DNA replication, and this is mediated by origin interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号