首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurons in vesical parasympathetic ganglia receive excitatory and inhibitory inputs from both divisions of the autonomic nervous system. Sacral parasympathetic pathways (cholinergic) provide the major excitatory input to these ganglia via activation of nicotinic receptors. Parasympathetic pathways also activate muscarinic inhibitory and excitatory receptors, which may exert a modulatory influence on transmission. Cholinergic transmission is relatively inefficient when preganglionic nerves are stimulated at low frequencies (< 1 Hz). However, excitatory postsynaptic potentials (EPSPs) and postganglionic firing markedly increase during repetitive stimulation at frequencies of 1-10 Hz. It is concluded that enhanced transmitter release accounts for the temporal facilitation and that vesical ganglia function as "high pass filters" that amplify the parasympathetic excitatory input to the detrusor muscle during micturition. Transmission in vesical ganglia is also sensitive to adrenergic inhibitory and facilitatory synaptic mechanisms elicited by efferent pathways in the hypogastric nerves. The effects of exogenous norepinephrine indicate that adrenergic inhibition is mediated by alpha receptors and reflects primarily a presynaptic depression of transmitter release although postsynaptic adrenergic hyperpolarizing and depolarizing effects have also been noted. Adrenergic facilitation is mediated by beta receptors as well as unidentified receptors. Norepinephrine also can inhibit or excite spontaneously active neurons in vesical ganglia. The existence of inhibitory and facilitatory synaptic mechanisms in vesical ganglia provides the basis for a complex ganglionic modulation of the central autonomic outflow to the bladder.  相似文献   

2.
Nicotinic mechanisms in the autonomic control of organ systems   总被引:4,自引:0,他引:4  
Most visceral organs are under the control of the autonomic nervous system (ANS). Information on the state and function of these organs is constantly relayed to the central nervous system (CNS) by sensory afferent fibers. The CNS integrates the sensory inputs and sends neural commands back to the organ through the ANS. The autonomic ganglia are the final site for the integration of the message traveling from the CNS. Nicotinic acetylcholine receptors (nAChRs) are the main mediators of fast synaptic transmission in ganglia, and therefore, are key molecules for the processing of neural information in the ANS. This review focuses on the role of nAChRs in the control of organ systems such as heart, gut, and bladder. The autonomic control of these organ systems is discussed in the light of the results obtained from the analysis of mice carrying mutations targeted to nAChR subunits expressed in the ANS.  相似文献   

3.
The autonomic nervous system consists of sympathetic and parasympathetic nerves, which functionally antagonize each other to control physiology and homeostasis of organs. However, it is largely unexplored how the autonomic nervous system is established during development. In particular, early formation of parasympathetic network remains elusive because of its complex anatomical structure. To distinguish between parasympathetic (cholinergic) and sympathetic (adrenergic) ganglia, vesicular acetylcholine transporter (VAChT) and choline O‐acetyltransferase (ChAT), proteins associated with acetylcholine synthesis, are known to be useful markers. Whereas commercially available antibodies against these proteins are widely used for mammalian specimens including mice and rats, these antibodies do not work satisfactorily in chickens, although chicken is an excellent model for the study of autonomic nervous system. Here, we newly raised antibodies against chicken VAChT and ChAT proteins. One monoclonal and three polyclonal antibodies for VAChT, and one polyclonal antibody for ChAT were obtained, which were available for Western blotting analyses and immunohistochemistry. Using these verified antibodies, we detected cholinergic cells in Remak ganglia of autonomic nervous system, which form in the dorsal aspect of the digestive tract of chicken E13 embryos. The antibodies obtained in this study are useful for visualization of cholinergic neurons including parasympathetic ganglia.  相似文献   

4.
Skok  V. I. 《Neurophysiology》2002,34(2-3):109-111
The distribution of subunits in different parts of the autonomic nervous system and the correlation between physiological functions of autonomic ganglion neurons and subunit composition of the nAChR are the subjects of their analysis. In particular, it was found that functionally different autonomic ganglia differ from each other in the subunit composition of their nAChR, and the sensitivity of the nAChR to specific antibodies is markedly variable even within the same ganglion.  相似文献   

5.
A phosphatase, hydrolyzing pyridoxal-5-phosphate (P5P), a physiologically active component of the vitamin B6 complex and an essential co-enzyme in the synthesis of neurotransmitters, has been localized cytochemically in the perikarya of neurons in the peripheral, autonomic and central nervous systems of the rat. Neurons in dorsal root ganglia, sympathetic ganglia and ventral horn of spinal cord were studied by light and electron microscopy, while Purkinje cells, neurons in the dentate nucleus of the cerebellum, thalamus, and hypothalamus were studied by light microscopy only. Optimal conditions for demonstrating this activity in aldehyde-fixed tissue were determined with dorsal root ganglia. At the optimal pH of 5.0, neurons in these ganglia and in all other neurons studied show pyridoxal-5-phosphatase (P5Pase) activity in GERL. Small neurons in dorsal root ganglia also display enzyme activity in the endoplasmic reticulum (ER); activities in GERL and ER are also appreciably high at neutral pH. Small and large neurons in these ganglia, and neurons of sympathetic ganglia, show variable P5Pase activity in the Golgi apparatus. These localizations differ from the usual sites of both acid phosphatase and alkaline phosphatase activities. The P5Pase activity, demonstrated cytochemically, is a new acid hydrolase activity in GERL.  相似文献   

6.
Summary Histological and histochemical techniques have been employed to determine the structure and autonomic innervation of paraganglia located in the human pelvis. In foetal and early postnatal tissues, paraganglia formed rounded cellular masses which were frequently in company with the autonomic nerves and ganglia of the urinary bladder and other pelvic viscera. The constituent cells contained only small amounts of cholinesterase and were unrelated to enzyme positive autonomic nerves; acetylcholinesterase containing nerves were occasionally observed in the capsule and the fibrous septa of the pelvic paraganglia. In early postnatal specimens, pelvic paraganglia frequently contained single or multiple pacinian-like corpuscles, each possessing a central region which was rich in both acetyl and pseudocholinesterase. These structures were rarely observed within autonomic ganglia and were absent 4 1/2 years post partum. By means of a histochemical technique, pelvic paraganglia were found to contain catecholamine which was attributed to the presence of relatively large quantities of noradrenaline. These observations have been discussed with particular reference to the results of other studies on the autonomic innervation of paraganglia.  相似文献   

7.
The article reviews published and own data on special features of organization of afferent cortical and infracortical correctional systems of the total striopallidaric nuclear complex in various species of mammals. The article focuses on analysis of organization of these flows in a dog being a classical object of behavioural experiments and a rare object of neuromorphological studies. It was discovered that the general trend towards segregated and converged flows of functionally different information at the level of striopallidum is retained in all tested mammals, being an evidence of the fundamental nature of the discussed principles of organization of the projection systems of basal ganglia. The reviewed morphological data confirm reliability of the presented concept of basal ganglia functioning.  相似文献   

8.
9.
From the results of previous studies, we have suggested that "autonomic" cell precursors exist in latent form in sensory ganglia of avian embryos. The potentialities can be expressed when the ganglia are transplanted into a young embryo host. In the present study, we have observed a similar transformation in cultures of dissociated dorsal root ganglia taken from quail embryos of 7-15 days of incubation. From the 4th day of culture onward, numerous adrenergic cells appear. They display tyrosine hydroxylase immunoreactivity, synthesise and store catecholamines and generally differ in size and shape from primary sensory neurons. They and/or their precursors can actively proliferate in culture. The differentiation of these catecholaminergic cells, which can not be detected in quail dorsal root ganglia during normal development in vivo, is dependent on one or more factors present in 9-day chick embryo extract.  相似文献   

10.
This study was performed to determine the contributions of the sympathetic and parasympathetic nervous systems to cardiovascular control. Hexamethonium was administered to block the autonomic ganglia, propranolol to block beta adrenergic receptors of the sympathetic nervous system, and methylatropine to block the parasympathetic nervous system. The results of this study indicate high sympathetic tone and low parasympathetic tone in resting Macaca fascicularis. These findings are different from those in man but are similar to other nonhuman primates.  相似文献   

11.
The diversity of neurons in sympathetic ganglia and dorsal root ganglia (DRG) provides intriguing systems for the analysis of neuronal differentiation. Cell surface receptors for the GDNF family ligands (GFLs) glial cell-line-derived neurotrophic factor (GDNF), neurturin and artemin, are expressed in subpopulations of these neurons prompting the question regarding their involvement in neuronal subtype specification. Mutational analysis in mice has demonstrated the requirement for GFL signalling during embryonic development of cholinergic sympathetic neurons as shown by the loss of expression from the cholinergic gene locus in ganglia from mice deficient for ret, the signal transducing subunit of the GFL receptor complex. Analysis in mutant animals and transgenic mice overexpressing GFLs demonstrates an effect on sensitivity to thermal and mechanical stimuli in DRG neurons correlating at least partially with the altered expression of transient receptor potential ion channels and acid-sensitive cation channels. Persistence of targeted cells in mutant ganglia suggests that the alterations are caused by differentiation effects and not by cell loss. Because of the massive effect of GFLs on neurite outgrowth, it remains to be determined whether GFL signalling acts directly on neuronal specification or indirectly via altered target innervation and access to other growth factors. The data show that GFL signalling is required for the specification of subpopulations of sensory and autonomic neurons. In order to comprehend this process fully, the role of individual GFLs, the transduction of the GFL signals, and the interplay of GFL signalling with other regulatory pathways need to be deciphered.  相似文献   

12.
Synopsis The distribution of cholinesterase activity was studied histochemically in the autonomic ganglia of the human sympathetic trunk and the vagus nerve using a modified Koelle's technique. It was found that the cytoplasm of both sympathetic and parasympathetic nerve cells contained acetylcholinesterase but the intensity of the enzyme reaction varied from cell to cell in both types of ganglia. Tissue elements surrounding the nerve cells showed a low butyrylcholinesterase activity in the ganglia of the sympathetic trunk but a high one in the terminal ganglia of the vagus nerve. Postganglionic nerves fibres gave a weak reaction for acetylcholinesterase in the sympathetic, but a strong one in the vagus ganglia. The distribution pattern of cholinesterases in human autonomic ganglia was found to be different from that of a variety of laboratory and wild animals.  相似文献   

13.
The neurotrophic factors that influence the development and function of the parasympathetic branch of the autonomic nervous system are obscure. Recently, neurturin has been found to provide trophic support to neurons of the cranial parasympathetic ganglion. Here we show that GDNF signaling via the RET/GFR(alpha)1 complex is crucial for the development of cranial parasympathetic ganglia including the submandibular, sphenopalatine and otic ganglia. GDNF is required early for proliferation and/or migration of the neuronal precursors for the sphenopalatine and otic ganglia. Neurturin exerts its effect later and is required for further development and maintenance of these neurons. This switch in ligand dependency during development is at least partly governed by the altered expression of GFR(&agr;) receptors, as evidenced by the predominant expression of GFR(&agr;)2 in these neurons after ganglion formation.  相似文献   

14.
A neurophysiologic model for aggressive behavior in the cat is proposed. Stimulus-bound and seizure-bound aggression was evaluated in relation to limbic and basal ganglia induced seizures (after-discharges). Electrically induced limbic and basal ganglia after-discharges were used because they are known to implicate septohypothalamic sites from which aggression can be elicited by direct stimulation. The occurrence of behavioral aggression is correlated with the discharge characteristics of a single discharging system and with two interacting discharging systems. Aggression is composed of autonomic and somato-motor components which poses relatively low and high thresholds, respectively, for their activation. Aggression occurring during a combined septum and amygdala discharge was more intense and prolonged than with a septum discharge alone. Participation of a slow frequency discharging basal ganglia system activated seizure-bound aggression in an otherwise nonaggressive limbic seizure. The limbic and basal ganglia stimulations and after-discharges lowered the excitability threshold of the aggression system and made it more vulnerable to being activated by external stimuli, such as visual and auditory stimuli. These observations are reminiscent of patients with aggressive behavior associated with psychomotor seizures.  相似文献   

15.
By grafting ganglia from embryonic quails into the neural crest migration pathway of 2-day chick embryos, it was previously demonstrated that all type of ganglia possess more developmental potentialities than those normally expressed in the normal course of development. Namely autonomic neurones with catecholamine and adrenomedullary cells can be obtained from grafted spinal ganglia. The latter also yield sensory neurons to the host dorsal root ganglia (DRG) but only if they are taken from the donor before 8 days of incubation. In the present article we show that the capacity to differentiate sensory neurons in back-transplantation experiments can be correlated with the presence in the donor DRG of cycling neuronal precursors. Once all the neurons have been withdrawn from the cell cycle - an event which occurs first in the mediodorsal and then in the lateroventral area of the ganglion - the DRG cell population gives rise exclusively to autonomic ganglion cells in the host. It is concluded that in the conditions of the back-transplantation experiments, the postmitotic neurons contained in the donor ganglion do not survive. Therefore, the neurons and paraganglion cells which differentiate in the host arise from still undifferentiated precursor cells. This indicates that besides sensory neuron precursors the embryonic DRG cell population also contains precursor cells for the autonomic differentiation pathway.  相似文献   

16.
Multiple system atrophy (MSA) is sporadic, progressive neurodegenerative disorder characterized clinically by autonomic dysfunction, Parkinsonism (MSA-P), and cerebellar ataxia (MSA-C) in any combination. Parkinsonism is present in the majority of patients (80%). Early in the course of the disease autonomic dysfunctions are present in approximately 40% of patients, while the domination of cerebellar symptoms is present in 20% of all patients. According to second consensus statement on diagnosis of MSA, to make the diagnosis of possible MSA, except Parkinsonism or a cerebellar syndrome, there must be one feature involving autonomic dysfunction plus one other additional that can include findings on history, clinical examination or changes in structural or functional imaging. We present a case of 60-year old male with Parkinsonism and cerebellar symptoms accompanied with signs of autonomic nervous system involvement. Level of autonomic dysfunction was not the level required for the diagnosis of probable MSA. On initially performed 1.5T MRI, the most prominent neurodegenerative feature of brain stem, cerebellum and basal ganglia was atrophy, however features like "hot-cross bun" sign, "slit-like" putaminal rim and middle cerebellar peduncle hyperintensities were detected only after MR imaging on higher resolution (3T) device. Our case points to the possibility that some typical structural changes that can help in diagnostic process may not be clearly visible on 1.5 T MRI devices. In such cases we suggest using 3T MRI device, if feasible, in order to demonstrate findings that may help in establishing the diagnosis of possible MSA.  相似文献   

17.
Central nervous system nuclei and circuits, such as the medial preoptic, ventromedial and paraventricular nuclei of the hypothalamus, play important roles in reproduction and parturition, and are influenced by estrogen. Peripheral autonomic and sensory neurons also play important roles in pregnancy and parturition. Moreover, the steroid hormone estrogen acts directly, not only on the reproductive tract organs (uterus and cervix), but also on the central and peripheral nerves by regulating expression of various neuronal genes. The peripheral primary afferent neurons innervating the uterine cervix relay mechanical and biochemical sensory information induced by local cervical events and by passage of fetuses, to the spinal cord and supraspinal centers. Consequently, the birth process in mammals is influenced by the combined action of neurons and hormones. Peripheral sensory stimuli, induced physiologically by fetal expulsion or mechanically by vaginocervical stimulation, alter behavior, as well as autonomic and neuroendocrine systems. Recent evidence indicates that primary afferent neurons innervating the cervix, in addition to their sensory effects, likely exert local "efferent" actions on the ripening cervix near term. These efferent effects may involve estrogen-regulated production of such neuropeptides as substance P and calcitonin gene-related peptide in lumbosacral dorsal root ganglia, and their release in the cervix. Collectively, these findings suggest an interrelationship among estrogen, cervix-related sensory neurons, and local cervical events near term.  相似文献   

18.
The roles of arginine vasopressin (AVP), the sympathetic nervous system, and the renin-angiotensin system in maintaining elevated blood pressure in established DOC-salt hypertension in rats were studied by injection of specific antagonists of these systems. The specific AVP antagonist dPVDAVP decreased blood pressure by 19 +/- 3 mm Hg in hypertensive rats and 6 +/- 2 mm Hg in control rats. In a different group of rats ganglionic blockade with chlorisondamine also caused a greater decrease in blood pressure in DOC-salt rats compared to controls (99 +/- 6 vs 58 +/- 4 mm Hg, respectively). In rats with autonomic ganglia blocked subsequent vasopressin antagonism decreased blood pressure 29 +/- 4 mm Hg in DOC-salt rats and 14 +/- 2 mm Hg in control rats. Converting enzyme inhibition with captopril in rats with autonomic ganglia blocked caused a lesser decrease in blood pressure in DOC-salt rats than in controls (8 +/- 2 vs 14 +/- 2 mm Hg, respectively). These results indicate that both AVP and the sympathetic nervous system contribute to the maintenance of DOC-salt hypertension. The renin-angiotension system appears to be relatively less important.  相似文献   

19.
Although the ultimate target of infection is the central nervous system (CNS), there is evidence that the enteric nervous system (ENS) and the peripheral nervous system (PNS) are involved in the pathogenesis of orally communicated transmissible spongiform encephalopathies. In several peripherally challenged rodent models of scrapie, spread of infectious agent to the brain and spinal cord shows a pattern consistent with propagation along nerves supplying the viscera. We used immunocytochemistry (ICC) and paraffin-embedded tissue (PET) blotting to identify the location and temporal sequence of pathological accumulation of a host protein, PrP, in the CNS, PNS, and ENS of hamsters orally infected with the 263K scrapie strain. Enteric ganglia and components of splanchnic and vagus nerve circuitry were examined along with the brain and spinal cord. Bioassays were carried out with selected PNS constituents. Deposition of pathological PrP detected by ICC was consistent with immunostaining of a partially protease-resistant form of PrP (PrP(Sc)) in PET blots. PrP(Sc) could be observed from approximately one-third of the way through the incubation period in enteric ganglia and autonomic ganglia of splanchnic or vagus circuitry prior to sensory ganglia. PrP(Sc) accumulated, in a defined temporal sequence, in sites that accurately reflected known autonomic and sensory relays. Scrapie agent infectivity was present in the PNS at low or moderate levels. The data suggest that, in this scrapie model, the infectious agent primarily uses synaptically linked autonomic ganglia and efferent fibers of the vagus and splanchnic nerves to invade initial target sites in the brain and spinal cord.  相似文献   

20.
Analysis of interspecific quail/chick chimaeras (made by grafting neural primordium from one species to the other) has demonstrated that the neural crest cell population, which gives rises to a large number of derivatives, including the great majority of peripheral ganglion cells, is pluripotential. When peripheral ganglia themselves are transplanted, it can be shown that many of the developmental potentialities of the parent structure are retained, their ultimate expression depending on the microenvironment in which they become located. One of the conclusions obtained from these in vivo studies, that sensory ganglia contain dormant precursors with autonomic potentialities, has been confirmed and extended by the results of in vitro investigations with dissociated 9- to 15-day embryonic quail dorsal root ganglia. Undetectable during normal embryonic development, adrenergic properties (tyrosine hydroxylase immunoreactivity, radio- and cytochemically demonstrable catecholamine production) develop in a population of small, multipolar cells after four days in culture. This differentiation is strongly dependent on the presence of chick embryo extract in the medium. Unlike the postmitotic primary sensory neurons of the ganglia, many of the adrenergic cells were found to incorporate 3H-thymidine during the culture period. These results support the contention that the latent autonomic percursors belong to the non-neuronal compartment of sensory ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号