首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reactivity of thiol groups and the subunit structure of aldolase   总被引:7,自引:6,他引:1  
1. Seven unique carboxymethylcysteine-containing peptides have been isolated from tryptic digests of rabbit muscle aldolase carboxymethylated with iodo[2-(14)C]acetic acid in 8m-urea. These peptides have been characterized by amino acid and end-group analysis and their location within the cyanogen bromide cleavage fragments of the enzyme has been determined. 2. Reaction of native aldolase with 5,5'-dithiobis-(2-nitrobenzoic acid), iodoacetamide and N-ethylmaleimide showed that a total of three cysteine residues per subunit of mol.wt. 40000 were reactive towards these reagents, and that the modification of these residues was accompanied by loss in enzymic activity. Chemical analysis of the modified enzymes demonstrated that the same three thiol groups are involved in the reaction with all these reagents but that the observed reactivity of a given thiol group varies with the reagent used. 3. One reactive thiol group per subunit could be protected when the modification of the enzyme was carried out in the presence of substrate, fructose 1,6-diphosphate, under which conditions enzymic activity was retained. This thiol group has been identified chemically and is possibly at or near the active site. Limiting the exposure of the native enzyme to iodoacetamide also served to restrict alkylation to two thiol groups and left the enzymic activity unimpaired. The thiol group left unmodified is the same as that protected by substrate during more rigorous alkylation, although it is now more reactive towards 5,5'-dithiobis-(2-nitrobenzoic acid) than in the native enzyme. 4. Conversely, prolonged incubation of the enzyme with fructose 1,6-diphosphate, which was subsequently removed by dialysis, caused an irreversible fall in enzymic activity and in thiol group reactivity measured with 5,5'-dithiobis-(2-nitrobenzoic acid). 5. It is concluded that the aldolase tetramer contains at least 28 cysteine residues. Each subunit appears to be identical with respect to number, location and reactivity of thiol groups.  相似文献   

2.
During reaction with [14C]iodoacetamide at pH 6.3, radioactivity was incorporated primarily into a single Klebsiella aerogenes urease peptide concomitant with activity loss. This peptide was protected from modification at pH 6.3 by inclusion of phosphate, a competitive inhibitor of urease, which also protected the enzyme from inactivation. At pH 8.5, several peptides were alkylated; however, modification of one peptide, identical to that modified at pH 6.3, paralleled activity loss. The N-terminal amino acid sequence and composition of the peptide containing the essential thiol was determined. Previous enzyme inactivation studies of K. aerogenes urease could not distinguish whether one or two essential thiols were present per active site (Todd, M. J., and Hausinger, R. P. (1991) J. Biol. Chem. 266, 10260-10267); we conclude that there is a single essential thiol present and identify this residue as Cys319 in the large subunit of the heteropolymeric enzyme.  相似文献   

3.
Chemical modification studies of manganese(III)-containing acid phosphatase [EC 3.1.3.2] were carried out to investigate the contributions of specific amino-acid side-chains to the catalytic activity. Incubation of the enzyme with N-ethylmaleimide at pH 7.0 caused a significant loss of the enzyme activity. The inactivation followed pseudo-first-order kinetics. Double log plots of pseudo-first-order rate constant vs. concentration gave a straight line with a slope of 1.02, suggesting that the reaction of one molecule of reagent per active site is associated with activity loss. The enzyme was protected from inactivation by the presence of molybdate or phosphate ions. Amino acid analyses of the N-ethylmaleimide-modified enzyme showed that the 96%-inactivated enzyme had lost about one histidine and one-half lysine residue per enzyme subunit without any significant decrease in other amino acids, and also demonstrated that loss of catalytic activity occurred in parallel with the loss of histidine residue rather than that of lysine residue. Molybdate ions also protected the enzyme against modification of the histidine residue. The enzyme was inactivated by photooxidation mediated by methylene blue according to pseudo-first-order kinetics. The pH profile of the inactivation rates of the enzyme showed that an amino acid residue having a pKa value of approximately 7.2 was involved in the inactivation. These studies indicate that at least one histidine residue per enzyme subunit participates in the catalytic function of Mn(III)-acid phosphatase.  相似文献   

4.
Rabbit muscle aldolase is irreversibly modified by the arginine-selective alpha-dicarbonyl, phenylglyoxal, loss of activity correlating with the unique modifications of one arginine residue per subunit, as determined by amino acid analysis, and (7-14C)phenylglyoxal incorporation. The affinity of the modified enzyme for dihydroxyacetone phosphate is significantly reduced while substantial protection against inactivation is afforded by fructose 1,6-disphosphate, dihydroxyacetone phosphate or phosphate ion. The nature of the substrate C-1 phosphate binding site in this enzyme is discussed in the light of these and other results.  相似文献   

5.
The kinetics of Klebsiella aerogenes urease inactivation by disulfide and alkylating agents was examined and found to follow pseudo-first-order kinetics. Reactivity of the essential thiol is affected by the presence of substrate and competitive inhibitors, consistent with a cysteine located proximal to the active site. In contrast to the results observed with other reagents, the rate of activity loss in the presence of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) saturated at high reagent concentrations, indicating that DTNB must first bind to urease before inactivation can occur. The pH dependence for the rate of urease inactivation by both disulfide and alkylating agents was consistent with an interaction between the thiol and a second ionizing group. The resulting macroscopic pKa values for the 2 residues are less than 5 and 12. Spectrophotometric studies at pH 7.75 demonstrated that 2,2'-dithiodipyridine (DTDP) modified 8.5 +/- 0.2 mol of thiol/mol of enzyme or 4.2 mol of thiol/mol of catalytic unit. With the slow tight binding competitive inhibitor phenyl-phosphorodiamidate (PPD) bound to urease, 1.1 +/- 0.1 mol of thiol/mol of catalytic unit were protected from modification. PPD-bound DTDP-modified urease could be reactivated by dialysis, consistent with the presence of one thiol per active site. Analogous studies at pH 6.1, using the competitive inhibitor phosphate, confirmed the presence of one protected thiol per catalytic unit. Under denaturing conditions, 25.5 +/- 0.3 mol of thiol/mol of enzyme (Mr = 211, 800) were modified by DTDP.  相似文献   

6.
Carbamoyl phosphate synthetase (CPS) from Escherichia coli catalyzes the formation of carbamoyl phosphate from 2 mol of ATP, bicarbonate, and glutamine. CPS was inactivated by the glutamine analog, acivicin. In the presence of ATP and bicarbonate the second-order rate constant for the inactivation of the glutamine-dependent activities was 4.0 x 10(4) m(-1) s(-1). In the absence of ATP and bicarbonate the second-order rate constant for inactivation of CPS was reduced by a factor of 200. The enzyme was protected against inactivation by the inclusion of glutamine in the reaction mixture. The ammonia-dependent activities were unaffected by the incubation of CPS with acivicin. These results are consistent with the covalent labeling of the glutamine-binding site located within the small amidotransferase subunit. The binding of ATP and bicarbonate to the large subunit of CPS must also induce a conformational change within the amidotransferase domain of the small subunit that enhances the nucleophilic character of the thiol group required for glutamine hydrolysis. The acivicin-inhibited enzyme was crystallized, and the three-dimensional structure was determined by x-ray diffraction techniques. The thiol group of Cys-269 was covalently attached to the dihydroisoxazole ring of acivicin with the displacement of a chloride ion.  相似文献   

7.
Inactivation of apo-glyceraldehyde-3-phosphate dehydrogenase from rat skeletal muscle in the presence of butanedione is the result of modification of one arginyl residue per subunit of the tetrameric enzyme molecule. The loss of activity follows pseudo-first-order kinetics. NAD+ increases the apparent first-order rate constant of inactivation. The effect of NAD+ on the enzyme inactivation is cooperative (Hill coefficient = 2.3--3.2). Glyceraldehyde 3-phosphate protected the holoenzyme against inactivation, decreasing the rate constant of the reaction. At saturating concentrations of substrate the protection was complete. The Hill plot demonstrates that the effect is cooperative. This suggests that subunit interactions in the tetrameric holoenzyme molecule may affect the reactivity of the essential arginyl residues. In contrast, glyceraldehyde 3-phosphate had no effect on the rate of inactivation of the apoenzyme in the presence of butanedione. 100 mM inorganic phosphate protected both the apoenzyme and holoenzyme against inactivation. The involvement of the microenvironment of the arginyl residues in the functionally important conformational changes of the enzyme is discussed.  相似文献   

8.
Reaction of the phosphofructokinase from Ascaris suum with the reagent, diethylpyrocarbonate (DEPC), results in the loss of enzymatic activity. Treatment of the inactivated enzyme with hydroxylamine brings about the recovery of almost 80% of the original activity suggesting that the modified residues are histidines. Further evidence for the modification of histidines is that concomitant with the loss of activity, there is a change in A242 nm that corresponds to the derivatization of 5-6 histidines per subunit. There is no change in A278 nm during the derivatization process, thereby ruling out the modification of tyrosines by DEPC. Analyses of the first order inactivation rate constant for DEPC derivatization at different pH values resulted in the determination of a pKa of 6.4 +/- 0.1 for the group on the enzyme that reacts with DEPC. Derivatization of the enzyme with DEPC in the presence of fructose 6-phosphate (Fru-6-P) protected the enzyme against inactivation by 80%. ATP or MgATP gave no protection against DEPC inactivation. When the Fru-6-P-protected enzyme was further reacted with DEPC in the absence of Fru-6-P, a total of 2 histidines were modified per subunit, and the derivatization of one of these could be correlated with activity loss. When the phosphofructokinase that had been derivatized by DEPC in the presence of Fru-6-P was assayed, it was found that it no longer exhibited allosteric properties and appeared to be desensitized to ATP inhibition. This loss of ATP inhibition could be correlated with the modification of 2 histidines per subunit by DEPC. The first order rate constant for desensitization was determined at different pH values and a pKa value of 7.0 +/- 0.2 was obtained for the group(s) responsible for the desensitization. Regulatory studies with the desensitized enzyme revealed that the enzyme was not stimulated by AMP, NH4+, K+, phosphate, sulfate, or hexose bisphosphates. It is concluded that histidine may be involved both in the active site and the ATP inhibitory site of the ascarid phosphofructokinase.  相似文献   

9.
Exposed thiol groups of rabbit muscle aldolase A were modified by 5,5'-dithiobis(2-nitrobenzoic) acid with concomittant loss of enzyme activity. When 5-thio-2-nitrobenzoate residues bound to enzyme SH groups were replaced by small and uncharged cyanide residues the enzyme activity was restored by more than 50%. The removal of a bulky C-terminal tyrosine residue from the active site of aldolase A resulted in enzyme which was inhibited by 5,5'-dithiobis(2-nitrobenzoic) acid only by 50% and its activity was nearly unchanged after modification of its thiol groups with cyanide. The results obtained show directly that rabbit muscle aldolase A does not possess functional cysteine residues and that the inactivation of the enzyme caused by sulfhydryl group modification reported previously can be attributed most likely to steric hindrance of a catalytic site by modifying agents.  相似文献   

10.
Rabbit liver aldolase B (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13) contains 8 SH groups/subunit and no disulfide bonds. In the native enzyme 3 SH groups/subunit are titrable with 5,5'-dithiobis(2-nitrobenzoic) acid (Nbs2), 2,2'-dithiodipyridine and N-ethylmaleimide, whereas p-mercuribenzoate is able to react with 4 thiol groups per subunit. Among the three thiol groups titrable with Nbs2, two react 'fast' with simple second-order kinetics, one reacts 'slow' and for this thiol group saturation kinetics is observed, suggesting a reversible binding of Nbs2 to the enzyme prior to covalent modification. It is shown that this binding most likely occurs via ionic interactions in the region close to the active site. The kinetic differentiation between the two 'fast' reacting groups is possible by kinetic analysis of the release of Nbs residues from the modified enzyme. Modification of all exposed SH groups of aldolase B results in 14-32% loss of enzymatic activity. The complete inactivation of liver aldolase by 1 mM p-mercuribenzoate reported previously (Waud, J.M., Feldman, E. and Schray, K.J. (1981) Arch. Biochem. Biophys. 206, 292-295) is shown to be caused by a nonspecific reaction of this reagent used in large excess. It is concluded that this isoenzyme differs from muscle aldolase in the reactivity of exposed SH groups, the mechanisms of the interaction with modifying agents and also in the effect of SH group modification on the enzymatic activity.  相似文献   

11.
Aldolase contains one tight binding site and one weak binding site per subunit for ATP [Kasprzak, A. and Kochman, M. (1980) Eur. J. Biochem. 104, 443-450]. The reaction of the ATP analog 5'-[p-(fluorosulfonyl)benzoyl]-1,N6-ethenoadenosine with rabbit aldolase A results in linear inactivation of enzyme with respect to covalent linkage of fluorescent label. The enzyme is completely protected against modification in the presence of saturating covalent binding (k2 = 0.033 min-1) is preceded by a fast reversible binding step (Ki = 6.8 mM). Chemical modification of aldolase leads to formation of stable N epsilon (4-carboxybenzenesulfonyl-lysine (Cbs-Lys) and O-(4-carboxybenzenesulfonyl-tyrosine (Cbs-Tyr) derivatives. Almost all Cbs-Lys was found in the N-terminal CNBr peptide (CN-1), whereas Cbs-Tyr was present both in the N-terminal (CN-1) and C-terminal (CN-2) peptide. From carboxypeptidase digestion and tryptic peptide analysis, Cbs-Lys was localized in position 107, a small part of Cbs-Tyr was detected in position 84, and the majority of Cbs-Tyr was found in the C-terminal position Tyr-363. We conclude that the covalent binding of the ATP analog occurs at the mononucleotide tight-binding site of aldolase and is associated with modification of Lys-107 and Tyr-363. This conclusion is based on the measurements of enzymatic activity loss as a function of ATP analog incorporation as well as on previous data. It is postulated that Lys-107, which is the C-6 phosphate binding site for fructose-1,6-P2, is in close proximity to the functionally important Tyr-363. The rather small extent of modification of Tyr-84 (0.15 mol/subunit), is due either to nonspecific protein modification or labeling of the weak mononucleotide binding site.  相似文献   

12.
Deoxycytidylate (dCMP) hydroxymethylase from Escherichia coli infected with a T-4 bacteriophage amber mutant has been purified to homogeneity. It is a dimer with a subunit molecular weight of 28,000. Chemical modification of the homogeneous enzyme with N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) leads to complete loss of enzyme activity. dCMP can protect the enzyme against NEM inactivation, but the dihydrofolate analogues methotrexate and aminopterin alone do not afford similar protection. Compared to dCMP alone, dCMP plus either methotrexate or aminopterin greatly enhances protection against NEM inactivation. DTNB inactivation is reversed by dithiothreitol. For both reagents, inactivation kinetics obey second-order kinetics. NEM inactivation is pH dependent with a pKa for a required thiol group of 9.15 +/- 0.11. Complete enzyme inactivation by both reagents involves the modification of one thiol group per mole of dimeric enzyme. There are two thiol groups in the totally denatured enzyme modified by either NEM or DTNB. Kinetic analysis of NEM inactivation cannot distinguish between these two groups; however, with DTNB kinetic analysis of 2-nitro-5-thiobenzoate release shows that enzyme inactivation is due to the modification of one fast-reacting thiol followed by the modification of a second group that reacts about 5-6-fold more slowly. In the presence of methotrexate, the stoichiometry of dCMP binding to the dimeric enzyme is 1:1 and depends upon a reduced thiol group. It appears that the two equally sized subunits are arranged asymmetrically, resulting in one thiol-containing active site per mole of dimeric enzyme.  相似文献   

13.
Fatty acid synthase from the uropygial gland of goose was inactivated by iodoacetamide with a second-order rate constant of 1.3 M-1 S-1 at pH 6.0 and 25 degrees C. Of the seven component activities of the synthase, only the condensation activity was significantly inhibited by iodoacetamide modification. Since preincubation of the enzyme with acetyl-CoA, but not with malonyl-CoA, protected the enzyme from inactivation by iodoacetamide, it is suggested that iodoacetamide probably modified the primer-binding thiol group at the condensation active site. Determination of the stoichiometry of modification was done using [1-14C]iodoacetamide that was purified by high-performance liquid chromatography. Graphical analysis of the data showed that binding of 1.2 carboxamidomethyl groups per subunit of fatty acid synthase would result in complete inhibition of the enzyme activity, suggesting that there is one condensation domain per subunit of fatty acid synthase. Analysis of the tryptic peptide map of the enzyme that was modified with [1-14C]iodoacetamide in the presence and absence of acetyl-CoA revealed that acetyl-CoA prevented the labeling of a major radioactive peptide and a minor radioactive peptide. These two peptides were purified by high-performance liquid chromatography. Amino acid analysis of these two peptides revealed that the major radioactive peptide contained S-carboxymethylcysteine while the minor radioactive peptide did not. However, the latter peptide contained beta-alanine, suggesting that this peptide was from the acyl carrier protein segment of fatty acid synthase and that the iodoacetamide treatment resulted in modification of the pantetheine thiol, although to a lower extent than the primer-binding thiol. The sequence of the primer-binding active site peptide from the condensation domain was H2N-Gly-Pro-Ser-Leu-Ser-Ile-Asp- Thr-Ala-Cys(carboxamidomethyl)-X-Ser-Ser-Leu-Met-Ala-Leu-Glu-Asn-A la-Tyr-Lys- COOH, the first reported sequence of the condensation active site from a vertebrate fatty acid synthase. The acyl carrier protein segment showed extensive sequence homology with the acyl carrier protein of Escherichia coli, particularly in the vicinity of the phosphopantetheine attachment, and the sequence was H2N-Asp-Val-Ser-Ser-Leu- Asn-Ala-Asp-Ser-Thr-Leu-Ala-Asp-Leu-Gly-Leu-Asp-Ser(4'-phosphopanteth ein e) -Leu-Met-Gly-Val-Glu-Val-Arg-COOH.  相似文献   

14.
Incubation of 6-phosphogluconate dehydrogenase from Candida utilis with either acetyl phosphate, 1,3-diphosphoglycerate or carbamoyl phosphate results in the phosphorylation of the protein. The binding of one phosphate residue per enzyme subunit does not affect significantly the kinetic properties, but makes the enzyme less reactive toward thiol reagents, trypsin and pyridoxal 5'-phosphate. We suggest indicate that: (1) 6-phosphogluconate dehydrogenase from C. utilis is phosphorylated non-enzymically by physiological acyl phosphates and (2) the phosphorylation of the enzyme modifies the rate of protein inactivation.  相似文献   

15.
Reaction of phenylglyoxal with aspartate transcarbamylase and its isolated catalytic subunit results in complete loss of enzymatic activity. This modification reaction is markedly influenced by pH and is partially reversible upon dialysis. Carbamyl phosphate or carbamyl phosphate with succinate partially protect the catalytic subunit and the native enzyme from inactivation by phenylglyoxal. In the native enzyme complete protection from inactivation is afforded by N-(phosphonacetyl)-L-aspartate. The decrease in enzymatic activity correlates with the modification of 6 arginine residues on each aspartate transcarbamylase molecule, i.e. 1 arginine per catalytic site. The data suggest that the essential arginine is involved in the binding of carbamyl phosphate to the enzyme. Reaction of the single thiol on the catalytic chain with 2-chloromercuri-4-nitrophenol does not prevent subsequent reaction with phenylglyoxal. If N-(phosphonacetyl)-L-aspartate is used to protect the active site we find that phenylglyoxal also causes the loss of activation of ATP and inhibition by CTP. The rate of loss of heterotropic effects is exactly the same for both nucleotides indicating that the two opposite regulatory effects originate at the same location on the enzyme, or are transmitted by the same mechanism between the subunits, or both.  相似文献   

16.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

17.
Dimeric rat liver acid phosphatase P1 of Mr 92,000 is inactivated by p-chloromercuribenzoate and fluorescein mercuriacetate (FMA). The enzyme is protected against the mercurials by the substrate analogue Pi. The reaction with FMA is accompanied by changes in absorbance at 495 nm and in fluorescence emission at 520 nm that are characteristic of reaction of this compound with thiol groups. Titration of P1 with FMA monitored by spectrophotometry or by fluorimetry indicated that equivalence is reached at an FMA/P1 ratio of 3. Since FMA can act as a bifunctional reagent, it is likely that P1 contains either 3 or 6 reactive thiol groups per molecule. Analysis of FMA inactivation/modification data by a statistical method suggests that of 6 reactive thiol groups, 2 are essential so that there are probably 3 thiol groups per subunit, one of which is located at the active site. If the total thiol number is 3, analysis suggests 1 essential thiol per subunit.  相似文献   

18.
Alkaline phosphatase from Megalobatrachus japonicus was inactivated by diethyl pyrocarbonate (DEP). The inactivation followed pseudo-first-order kinetics with a second-order rate constant of 176 M(-1) x min(-1) at pH 6.2 and 25 degrees C. The loss of enzyme activity was accompanied with an increase in absorbance at 242 nm and the inactivated enzyme was re-activated by hydroxylamine, indicating the modification of histidine residues. This conclusion was also confirmed by the pH profiles of inactivation, which showed the involvement of a residue with pK(a) of 6.6. The presence of glycerol 3-phosphate, AMP and phosphate protected the enzyme against inactivation. The results revealed that the histidine residues modified by DEP were located at the active site. Spectrophotometric quantification of modified residues showed that modification of two histidine residues per active site led to complete inactivation, but kinetic stoichiometry indicated that one molecule of modifier reacted with one active site during inactivation, probably suggesting that two essential histidine residues per active site are necessary for complete activity whereas modification of a single histidine residue per active site is enough to result in inactivation.  相似文献   

19.
Treatment of homogeneous preparations of Escherichia coli 2-keto-4-hydroxyglutarate aldolase with 1,2-cyclohexanedione, 2,3-butanedione, phenylglyoxal, or 2,4-pentanedione results in a time- and concentration-dependent loss of enzymatic activity; the kinetics of inactivation are pseudo-first order. Cyclohexanedione is the most effective modifier; a plot of log (1000/t 1/2) versus log [cyclohexanedione] gives a straight line with slope = 1.1, indicating that one molecule of modifier reacts with each active unit of enzyme. The kinetics of inactivation are first order with respect to cyclohexanedione, suggesting that the loss of activity is due to modification of 1 arginine residue/subunit. Controls establish that this inactivation is not due to modifier-induced dissociation or photoinduced structural alteration of the aldolase. The same Km but decreased Vmax values are obtained when partially inactivated enzyme is compared with native. Amino acid analyses of 95% inactivated aldolase show the loss of 1 arginine/subunit with no significant change in other amino acid residues. Considerable protection against inactivation is provided by the substrates 2-keto-4-hydroxyglutarate and pyruvate (75 and 50%, respectively) and to a lesser extent (40 and 35%, respectively) by analogs like 2-keto-4-hydroxybutyrate and 2-keto-3-deoxyarabonate. In contrast, formaldehyde or glycolaldehyde (analogs of glyoxylate) under similar conditions show no protective effect. These results indicate that an arginine residue is required for E. coli 2-keto-4-hydroxyglutarate aldolase activity; it most likely participates in the active site of the enzyme by interacting with the carboxylate anion of the pyruvate-forming moiety of 2-keto-4-hydroxyglutarate.  相似文献   

20.
The mechanism of the inactivation of 6-phosphogluconate dehydrogenase from Candida utilis with two coenzyme analogues can be differentiated on the basis of kinetic studies and of the properties of the inactivated enzyme. 3-Chloroacetylpyridine--adenine dinucleotide phosphate is clearly an affinity label and 3-choloroacetylpyridine--adenine dinucleotide a second-order reagent. For 3-chloroacetylpyridine--adenine dinucleotide phosphate, there is a loss of one thiol per subunit at complete inactivation whereas for 3-chloroacetylpyridine--adenine dinucleotide 2.7 thiol groups are lost. The fluorescence of the protein is quenched after alkylation by 3-chloroacetylpyridine--adenine dinucleotide phosphate and there is no quenching after the inactivation with 3-chloroacetylpyridine--adenine dinucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号