首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of the backbone of the gramicidin A transmembrane cation channel in dimyristoylphosphatidylcholine bilayers have been investigated using solid state 15N nuclear magnetic resonance (n.m.r.) spectroscopy. With the temperature-dependent fluidity of the bilayer, the rates of motions in the helical gramicidin channel can be modulated. It is shown that in the gel phase, all substantial motions of the channel are slow on the timescale of the n.m.r. experiment (3.5 kHz). The use of oriented samples in which the axis of global channel rotation is aligned parallel to the magnetic field enables separation of global and local dynamics. Spectra obtained from oriented bilayer samples containing single-site 15N-labeled gramicidin at 8 degrees C are analyzed to yield a spatial model for local backbone motion. This model includes the axis of motion, the mean orientation, and the maximum amplitude of displacement for individual peptide planes. Specific sites in the first turn of the amino terminus were investigated, with emphasis on the Ala3 and Leu4 linkages, for which the orientation of the 15N chemical shift tensor with respect to the molecular frame has been determined. The effect of two well-characterized bilayer defect structures, parabolic focal conics and oily streaks, is included in the spectral simulations. It is found that only relatively small amplitude motions are possible at the two sites, with amplitudes of not more than +/- 8 degrees and +/- 15 degrees for the Ala3 and Leu4 sites, respectively. Detailed characterization of the bilayer surface geometry in the oriented samples is presently the major limiting factor in the use of this technique for probing the spatial extent of local motions in integral membrane proteins.  相似文献   

2.
Sharma AK  Ye L  Alper SL  Rigby AC 《The FEBS journal》2012,279(3):420-436
Enzymatic catalysis and protein signaling are dynamic processes that involve local and/or global conformational changes occurring across a broad range of time scales. (1) H-(15) N relaxation NMR provides a comprehensive understanding of protein backbone dynamics both in the apo (unliganded) and ligand-bound conformations, enabling both fast and slow internal motions of individual amino acid residues to be observed. We recently reported the structure and nucleotide binding properties of the sulfate transporter and anti-sigma factor antagonist (STAS) domain of Rv1739c, a SulP anion transporter protein of Mycobacterium tuberculosis. In the present study, we report (1) H-(15) N NMR backbone dynamics measurements [longitudinal (T(1) ), transverse (T(2) ) and steady-state ({(1) H}-(15) N) heteronuclear NOE] of the Rv1739c STAS domain, in the absence and presence of saturating concentrations of GTP and GDP. Analysis of measured relaxation data and estimated dynamic parameters indicated distinct features differentiating the binding of GTP and GDP to Rv1739c STAS. The 9.55 ns overall rotational correlation time of Rv1739c STAS increased to 10.48 ns in the presence of GTP, and to 13.25 ns in the presence of GDP, indicating significant nucleotide-induced conformational changes. These conformational changes were accompanied by slow time scale (μs to ms) motions in discrete regions of the protein, as reflected by guanine nucleotide-induced changes in relaxation parameters. The observed nucleotide-specific alterations in the relaxation properties of individual STAS residues reflect an increased molecular anisotropy and/or the emergence of conformational equilibria governing functional properties of the STAS domain.  相似文献   

3.
We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use 13C NMR spin‐lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4‐hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius‐type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force‐field (termed as AMBER99SB‐ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Proteins 2014; 82:195–215. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Abstract

The results of 1-nanosecond molecular dynamics simulations of the enzyme ribonuclease T1 and its 2′GMP complex in water are presented. A classification of the angular reorientations of the backbone amide groups is achieved via a transformation of NH-vector trajectories into several coordinate frames, thus unravelling contributions of NH-bond librations and backbone dihedral angle fluctuations.

The former turned out to be similar for all amides, as characterized by correlation times of librational motions in a subpicosecond scale, angular amplitudes of about 10–12° for out-of-peptide-plane displacements of the NH-bond and 3–5° for the in-plane displacements, whereas the contributions of much slower backbone dihedral angle fluctuations strongly depend on the secondary structure. Correlation functions relevant for NMR were obtained and analyzed utilizing the ‘model-free’ approach (Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546–4559,4559-4570; Clore et al., (1990) J. Am. Chem. Soc. 112, 4989–4991). The dependence of the amplitude of local motion on the residue location in the backbone is in good agreement with the results of NMR relaxation measurements and X-ray data. The protein dynamics is characterized by a highly restricted local motion of those parts of the backbone with defined secondary structure as well as by a high flexibility in loop regions. The comparison of results derived from different periods of the trajectory (of 50 ps and 1 ns duration, 1000 points sampled) reveals a dependence of the observed dynamic picture on the characteristic time scale of the experimental method used. Comparison of the MD data for the free and liganded enzyme clearly indicates a restriction of the mobility within certain regions of the backbone upon inhibitor binding.  相似文献   

5.
A new model for the prediction of protein backbone motions is presented. The model, termed reorientational contact-weighted elastic network model, is based on a multidimensional reorientational harmonic potential of the backbone amide bond vector orientations and it is applied to the interpretation of dynamics parameters obtained from NMR relaxation data. The individual energy terms are weighted as a function of the intervector distances and by the contact strengths of each bond vector with respect to its local environment. Correlated reorientational motional properties of the bond vectors are obtained by means of normal mode analysis. Application to a set of proteins with known three-dimensional structures yields good to excellent agreement between predicted and experimental NMR order parameters presenting an improvement over the local contact model. The reorientational eigenmodes of the reorientational contact-weighted elastic network model method provide direct information on the collective nature of protein backbone motions. The dominant eigenmodes have a notably low collectivity, which is consistent with the behavior found for reorientational eigenmodes from molecular dynamics simulations.  相似文献   

6.
7.
To elucidate the influence of local motion of the polypeptide chain on the catalytic mechanism of an enzyme, we have measured (15)N relaxation data for Escherichia coli dihydrofolate reductase in three different complexes, representing different stages in the catalytic cycle of the enzyme. NMR relaxation data were analyzed by the model-free approach, corrected for rotational anisotropy, to provide insights into the backbone dynamics. There are significant differences in the backbone dynamics in the different complexes. Complexes in which the cofactor binding site is occluded by the Met20 loop display large amplitude motions on the picosecond/nanosecond time scale for residues in the Met20 loop, the adjacent betaF-betaG loop and for residues 67-69 in the adenosine binding loop. Formation of the closed Met20 loop conformation in the ternary complex with folate and NADP(+), results in attenuation of the motions in the Met20 loop and the betaF-betaG loop but leads to increased flexibility in the adenosine binding loop. New fluctuations on a microsecond/millisecond time scale are observed in the closed E:folate:NADP(+) complex in regions that form hydrogen bonds between the Met20 and the betaF-betaG loops. The data provide insights into the changes in backbone dynamics during the catalytic cycle and point to an important role of the Met20 and betaF-betaG loops in controlling access to the active site. The high flexibility of these loops in the occluded conformation is expected to promote tetrahydrofolate-assisted product release and facilitate binding of the nicotinamide ring to form the Michaelis complex. The backbone fluctuations in the Met20 loop become attenuated once it closes over the active site, thereby stabilizing the nicotinamide ring in a geometry conducive to hydride transfer. Finally, the relaxation data provide evidence for long-range motional coupling between the adenosine binding loop and distant regions of the protein.  相似文献   

8.
9.
The local and global dynamics of the chemokine receptor CXCR1 are characterized using a combination of solution NMR and solid-state NMR experiments. In isotropic bicelles (q = 0.1), only 13% of the expected number of backbone amide resonances is observed in (1)H/(15)N HSQC solution NMR spectra of uniformly (15)N-labeled samples; extensive deuteration and the use of TROSY made little difference in the 800 MHz spectra. The limited number of observed amide signals is ascribed to mobile backbone sites and assigned to specific residues in the protein; 19 of the signals are from residues at the N-terminus and 25 from residues at the C-terminus. The solution NMR spectra display no evidence of local backbone motions from residues in the transmembrane helices or interhelical loops of CXCR1. This finding is reinforced by comparisons of solid-state NMR spectra of both magnetically aligned and unoriented bilayers containing either full-length or doubly N- and C-terminal truncated CXCR1 constructs. CXCR1 undergoes rapid rotational diffusion about the normal of liquid crystalline phospholipid bilayers; reductions in the frequency span and a change to axial symmetry are observed for both carbonyl carbon and amide nitrogen chemical shift powder patterns of unoriented samples containing (13)C- and (15)N-labeled CXCR1. In contrast, when the phospholipids are in the gel phase, CXCR1 does not undergo rapid global reorientation on the 10(4) Hz time scale defined by the carbonyl carbon and amide nitrogen chemical shift powder patterns.  相似文献   

10.
L E Kay  D A Torchia  A Bax 《Biochemistry》1989,28(23):8972-8979
This paper describes the use of novel two-dimensional nuclear magnetic resonance (NMR) pulse sequences to provide insight into protein dynamics. The sequences developed permit the measurement of the relaxation properties of individual nuclei in macromolecules, thereby providing a powerful experimental approach to the study of local protein mobility. For isotopically labeled macromolecules, the sequences enable measurements of heteronuclear nuclear Overhauser effects (NOE) and spin-lattice (T1) and spin-spin (T2) 15N or 13C relaxation times with a sensitivity similar to those of many homonuclear 1H experiments. Because T1 values and heteronuclear NOEs are sensitive to high-frequency motions (10(8)-10(12) s-1) while T2 values are also a function of much slower processes, it is possible to explore dynamic events occurring over a large time scale. We have applied these techniques to investigate the backbone dynamics of the protein staphylococcal nuclease (S. Nase) complexed with thymidine 3',5'-bisphosphate (pdTp) and Ca2+ and labeled uniformly with 15N. T1, T2, and NOE values were obtained for over 100 assigned backbone amide nitrogens in the protein. Values of the order parameter (S), characterizing the extent of rapid 1H-15N bond motions, have been determined. These results suggest that there is no correlation between these rapid small amplitude motions and secondary structure for S. Nase. In contrast, 15N line widths suggest a possible correlation between secondary structure and motions on the millisecond time scale. In particular, the loop region between residues 42 and 56 appears to be considerably more flexible on this slow time scale than the rest of the protein.  相似文献   

11.
Computational tools have been developed in the last few years, to allow a direct determination of protein structures from NMR data. Numerical calculations with simulated and experimental NMR constraints for distances and torsional angles show that data sets available with present NMR techniques carry enough information to determine reliably the global fold of a small protein. The maximum size of a protein for which the direct method can be applied is not limited by the computational tools but rather by the resolution of the two-dimensional spectra. A general estimate of the maximum size would be a molecular weight of about 10,000 (Markley et al. 1984), but parts of larger proteins might be accessible with the method. Effort for improvement of the NMR structures should be concentrated more on the local conformation rather than the global features. The r.m.s. D values for variations of the polypeptide backbone fold are on the order of 1.5-2 A for several of the studied proteins, indicating that the global structure is well determined by the present NMR data and their interpretation. The local structures are sometimes rather poor, with standard deviations for the backbone torsion angles of about 50 degrees. Possible improvements would be stereospecific resonance assignments of individual methylene protons and individual assignments of the methyl groups of the branched side-chains. Accurate estimates of the short-range NOE distance constraints by calibrating the distance constraints, including segmental flexibility effects, and combined use of distance geometry, energy minimization and molecular dynamics calculations, are further tools for improving the structures.  相似文献   

12.
Savard PY  Gagné SM 《Biochemistry》2006,45(38):11414-11424
Backbone dynamics of TEM-1 beta-lactamase (263 amino acids, 28.9 kDa) were studied by 15N nuclear magnetic resonance relaxation at 11.7, 14.1, and 18.8 T. The high quality of the spectra allowed us to measure the longitudinal relaxation rate (R1), the transverse relaxation rate (R2), and the {1H}-15N NOE for up to 227 of the 250 potentially observable backbone amide groups. The model-free formalism was used to determine internal motional parameters using an axially anisotropic model. TEM-1 exhibits a small prolate axial anisotropy (D(parallel)/D(perpendicular) = 1.23 +/- 0.01) and a global correlation time (tau(m)) of 12.41 +/- 0.01 ns. The unusually high average generalized order parameter (S2) of 0.90 +/- 0.02 indicates that TEM-1 is one of the most ordered proteins studied by liquid-state NMR to date. Although the omega-loop has a high degree of order in the picosecond-to-nanosecond time scale (mean S2 value of 0.90 +/- 0.02), we observed the presence of microsecond-to-millisecond time scale motions for this loop, as for the vicinity of the active site. These motions could be relevant for the catalytic function of TEM-1. Amide exchange experiments were also performed, and several amide groups were not exchanged after 12 days, an indication that global motions in TEM-1 are also very limited. Although detailed dynamics characterization by NMR cannot be readily applied to TEM-1 in the presence of relevant substrates, the unusual picosecond-to-nanosecond dynamics behavior of TEM-1 presented here will be essential to the validation and improvement of future molecular dynamics simulations of TEM-1 in the presence of functionally relevant substrates.  相似文献   

13.
The 3D structure of methanogen chromosomal protein 1 (MC1), determined with heteronuclear NMR methods, agrees with its function in terms of the shape and nature of the binding surface, whereas the 3D structure determined with homonuclear NMR does not. The structure features five loops, which show a large distribution in the ensemble of 3D structures. Evidence for the fact that this distribution signifies internal mobility on the nanosecond time scale was provided by using (15)N-relaxation and molecular dynamics simulations. Structural variations of the arm (11 residues) induced large shape anisotropy variations on the nanosecond time scale that ruled out the use of the model-free formalism to analyze the relaxation data. The backbone dynamics analysis of MC1 was achieved by comparison with 20 ns molecular dynamics trajectories. Two β-bulges showed that hydrogen bond formation correlated with ? and ψ dihedral angle transitions. These jumps were observed on the nanosecond time scale, in agreement with a large decrease in (15)N-NOE for Gly17 and Ile89. One water molecule bridging NH(Glu87) and CO(Val57) through hydrogen bonding contributed to these dynamics. Nanosecond slow motions observed in loops LP3 (35-42) and LP5 (67-77) reflected the lack of stable hydrogen bonds, whereas the other loops, LP1 (10-14), LP2 (22-24), and LP4 (50-53), were stabilized by several hydrogen bonds. Dynamics are often directly related to function. Our data strongly suggest that residues belonging to the flexible regions of MC1 could be involved in the interaction with DNA.  相似文献   

14.
The molecular dynamics of solid poly-L-lysine has been studied by the following natural abundance (13)C-NMR relaxation methods: measurements of the relaxation times T(1) at two resonance frequencies, off-resonance T(1rho) at two spin-lock frequencies, and proton-decoupled T(1rho). Experiments were performed at different temperatures and hydration levels (up to 17% H(2)O by weight). The natural abundance (13)C-CPMAS spectrum of polylysine provides spectral resolution of all types of backbone and side chain carbons and thus, dynamic parameters could be determined separately for each of them. At the same time, the conformational properties of polylysine were investigated by Fourier transform infrared spectroscopy. The data obtained from the different NMR experiments were simultaneously analyzed using the correlation function formalism and model-free approach. The results indicate that in dry polylysine both backbone and side chains take part in two low amplitude motions with correlation times of the order of 10(-4) s and 10(-9) s. Upon hydration, the dynamic parameters of the backbone remain almost constant except for the amplitude of the slower process that increases moderately. The side chain dynamics reveals a much stronger hydration response: the amplitudes of both slow and fast motions increase significantly and the correlation time of the slow motion shortens by about five orders of magnitude, and at hydration levels of more than 10% H(2)O fast and slow side chain motions are experimentally indistinguishable. These changes in the molecular dynamics cannot be ascribed to any hydration-dependent conformational transitions of polylysine because IR spectra reveal almost no hydration dependence in either backbone or side chain absorption domains. The physical nature of the fast and slow motions, their correlation time distributions, and hydration dependence of microdynamic parameters are discussed.  相似文献   

15.
D Huster  L Xiao  M Hong 《Biochemistry》2001,40(25):7662-7674
Solid-state NMR spectroscopy was employed to study the molecular dynamics of the colicin Ia channel domain in the soluble and membrane-bound states. In the soluble state, the protein executes small-amplitude librations (with root-mean-square angular fluctuations of 0-10 degrees ) in the backbone and larger-amplitude motions (16-17 degrees ) in the side chains. Upon membrane binding, the motional amplitudes increase significantly for both the backbone (12-16 degrees ) and side chains (23-29 degrees ), as manifested by the reduction in the C-H and H-H dipolar couplings and (15)N chemical shift anisotropy. These motions occur not only on the pico- to nanosecond time scales, but also on the microsecond time scale, as revealed by the (1)H rotating-frame spin-lattice relaxation times. Average motional correlation times of 0.8 and 1.2 micros were extracted for the soluble and membrane-bound states, respectively. In comparison, both forms of the colicin Ia channel domain are completely immobile on the millisecond scale. These results indicate that the colicin Ia channel domain has enhanced conformational mobility in the lipid bilayer compared to the soluble state. This membrane-induced mobility increase is consistent with the loss of tertiary structure of the protein in the membrane, which was previously suggested by the extended helical array model [Zakharov et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 4282-4287]. An extended structure would also facilitate protein interactions with the mobile lipids and thus increase the protein internal motions. We speculate that the large mobility of the membrane-bound colicin Ia channel domain is a prerequisite for channel opening in the presence of a voltage gradient.  相似文献   

16.
The backbone dynamics of the four-helical bundle cytokine leukemia inhibitory factor (LIF) have been investigated using 15N NMR relaxation and amide proton exchange measurements on a murine-human chimera, MH35-LIF. For rapid backbone motions (on a time scale of 10 ps to 100 ns), as probed by 15N relaxation measurements, the dynamics parameters were calculated using the model-free formalism incorporating the model selection approach. The principal components of the inertia tensor of MH35-LIF, as calculated from its NMR structure, were 1:0.98:0.38. The global rotational motion of the molecule was, therefore, assumed to be axially symmetric in the analysis of its relaxation data. This yielded a diffusion anisotropy D(parallel)/D(perpendicular) of 1.31 and an effective correlation time (4D(perpendicular) + 2D(parallel))(-1) of 8.9 ns. The average values of the order parameters (S2) for the four helices, the long interhelical loops, and the N-terminus were 0.91, 0.84, and 0.65, respectively, indicating that LIF is fairly rigid in solution, except at the N-terminus. The S2 values for the long interhelical loops of MH35-LIF were higher than those of their counterparts in short-chain members of the four-helical bundle cytokine family. Residues involved in LIF receptor binding showed no consistent pattern of backbone mobilities, with S2 values ranging from 0.71 to 0.95, but residues contributing to receptor binding site III had relatively lower S2 values, implying higher amplitude motions than for the backbone of sites I and II. In the relatively slow motion regime, backbone amide exchange measurements showed that a number of amides from the helical bundle exchanged extremely slowly, persisting for several months in 2H2O at 37 degrees C. Evidence for local unfolding was considered, and correlations among various structure-related parameters and the backbone amide exchange rates were examined. Both sets of data concur in showing that LIF is one of the most rigid four-helical bundle cytokines.  相似文献   

17.
18.
MATCH (Memetic Algorithm and Combinatorial Optimization Heuristics) is a new memetic algorithm for automated sequence-specific polypeptide backbone NMR assignment of proteins. MATCH employs local optimization for tracing partial sequence-specific assignments within a global, population-based search environment, where the simultaneous application of local and global optimization heuristics guarantees high efficiency and robustness. MATCH thus makes combined use of the two predominant concepts in use for automated NMR assignment of proteins. Dynamic transition and inherent mutation are new techniques that enable automatic adaptation to variable quality of the experimental input data. The concept of dynamic transition is incorporated in all major building blocks of the algorithm, where it enables switching between local and global optimization heuristics at any time during the assignment process. Inherent mutation restricts the intrinsically required randomness of the evolutionary algorithm to those regions of the conformation space that are compatible with the experimental input data. Using intact and artificially deteriorated APSY-NMR input data of proteins, MATCH performed sequence-specific resonance assignment with high efficiency and robustness.  相似文献   

19.
The dominant dynamics of a partially folded A-state analogue of ubiquitin that give rise to NMR 15N spin relaxation have been investigated using molecular dynamics (MD) computer simulations and reorientational quasiharmonic analysis. Starting from the X-ray structure of native ubiquitin with a protonation state corresponding to a low pH, the A-state analogue was generated by a MD simulation of a total length of 33 ns in a 60%/40% methanol/water mixture using a variable temperature scheme to control and speed up the structural transformation. The N-terminal half of the A-state analogue consists of loosely coupled native-like secondary structural elements, while the C-terminal half is mostly irregular in structure. Analysis of dipolar N-H backbone correlation functions reveals reorientational amplitudes and time-scale distributions that are comparable to those observed experimentally. Thus, the trajectory provides a realistic picture of a partially folded protein that can be used for gaining a better understanding of the various types of reorientational motions that are manifested in spin-relaxation parameters of partially folded systems. For this purpose, a reorientational quasiharmonic reorientational analysis was performed on the final 5 ns of the trajectory of the A-state analogue, and for comparison on a 5 ns trajectory of native ubiquitin. The largest amplitude reorientational modes show a markedly distinct behavior for the two states. While for native ubiquitin, such motions have a more local character involving loops and the C-terminal end of the polypeptide chain, the A-state analogue shows highly collective motions in the nanosecond time-scale range corresponding to larger-scale movements between different segments. Changes in reorientational backbone entropy between the A-state analogue and the native state of ubiquitin, which were computed from the reorientational quasiharmonic analyses, are found to depend significantly on motional correlation effects.  相似文献   

20.
Abu-Baker S  Lu JX  Chu S  Brinn CC  Makaroff CA  Lorigan GA 《Biochemistry》2007,46(42):11695-11706
2H and 15N solid-state NMR spectroscopic techniques were used to investigate both the side chain and backbone dynamics of wild-type phospholamban (WT-PLB) and its phosphorylated form (P-PLB) incorporated into 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine (POPC) phospholipid bilayers. 2H NMR spectra of site-specific CD3-labeled WT-PLB (at Leu51, Ala24, and Ala15) in POPC bilayers were similar under frozen conditions (-25 degrees C). However, significant differences in the line shapes of the 2H NMR spectra were observed in the liquid crystalline phase at and above 0 degrees C. The 2H NMR spectra indicate that Leu51, located toward the lower end of the transmembrane (TM) helix, shows restricted side chain motion, implying that it is embedded inside the POPC lipid bilayer. Additionally, the line shape of the 2H NMR spectrum of CD3-Ala24 reveals more side chain dynamics, indicating that this residue (located in the upper end of the TM helix) has additional backbone and internal side chain motions. 2H NMR spectra of both WT-PLB and P-PLB with CD3-Ala15 exhibit strong isotropic spectral line shapes. The dynamic isotropic nature of the 2H peak can be attributed to side chain and backbone motions to residues located in an aqueous environment outside the membrane. Also, the spectra of 15N-labeled amide WT-PLB at Leu51 and Leu42 residues showed only a single powder pattern component indicating that these two 15N-labeled residues located in the TM helix are motionally restricted at 25 degrees C. Conversely, 15N-labeled amide WT-PLB at Ala11 located in the cytoplasmic domain showed both powder and isotropic components at 25 degrees C. Upon phosphorylation, the mobile component contribution increases at Ala11. The 2H and 15N NMR data indicate significant backbone motion for the cytoplasmic domain of WT-PLB when compared to the transmembrane section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号