首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the function of widely distributed central chemoreceptors during sleep and wakefulness in the rat, we focally stimulate single chemoreceptor sites during naturally occurring sleep-wake cycles by microdialysis of artificial cerebrospinal fluid equilibrated with 25% CO2. In retrotrapezoid nucleus, this increased ventilation (tidal volume) by 24% only in wakefulness (Li A, Randall M, and Nattie E. J Appl Physiol 87: 910-919, 1999). In caudal medullary raphé, it increased ventilation (frequency) by 15-20% only in sleep (Nattie EE and Li A. J Appl Physiol 90: 1247-1257, 2001). Here, in nucleus tractus solitarius (NTS), focal acidification significantly increased ventilation by 11% in sleep and 7% in wakefulness rostrally (n = 5) and by 16% in sleep and 28% in wakefulness caudally (n = 5). The sleep-wake cycle was unaltered. Dialysis with 5% CO2 had no effect. Dialysis with 50% CO2 caudally did not further stimulate ventilation but did disrupt sleep. Central chemoreceptors in the NTS affect breathing in both sleep and wakefulness. The threshold for arousal in caudal NTS is greater than that for the stimulation of breathing.  相似文献   

2.
Central chemoreceptors are widespread within the brain stem. We suggest that their function at some sites may vary with the state of arousal. In this study, we tested the hypothesis that the function of chemoreceptors in the retrotrapezoid nucleus (RTN) varies with sleep and wakefulness. In unanesthetized rats, we produced focal acidification of the RTN by means of a microdialysis probe (tip containing the semipermeable membrane = 1-mm length, 240-microm diameter, and 45-nl volume). With the use of a dialysate equilibrated with 25% CO(2), the tissue pH change (measured in anesthetized animals) was 1) limited to within 550 microm of the probe and, 2) at the probe tip, was equivalent to that observed with end-tidal PCO(2) of 63 Torr. This focal acidification of the RTN increased ventilation significantly by 24% above baseline, on average, in 13 trials in seven rats only during wakefulness. The effect was entirely due to an increase in tidal volume. During sleep defined by behavioral criteria, ventilation was unaffected, on average, in 10 trials in seven rats. During sleep, the chemoreceptors in the RTN appear to be inactive, or, if active, the respiratory control system either is not responding or is responding with very low gain. Because ventilation is increased during sleep with all central chemoreceptor sites stimulated via systemic CO(2) application, other central chemoreceptor locations must have enhanced effectiveness.  相似文献   

3.
Our aim was to determine the effects of focal acidification in the raphe obscurus (RO) and raphe pallidus (RP) on ventilation and other physiological variables in both the awake and sleep states in adult goats. Through chronically implanted microtubules, 1) a focal acidosis was created by microdialysis of mock cerebrospinal fluid (mCSF), equilibrated with various levels of CO2, and 2) medullary extracellular fluid (ECF) pH was measured by using a custom-made pH electrode. Focal acidosis in the RO or RP, by dialyzing either 25 or 80% CO2 (mCSF pH approximately 6.8 or 6.3), increased (P < 0.05) inspiratory flow by 8 and 12%, respectively, while the animals were awake during the day, but not at night while they were awake or in non-rapid eye movement sleep. While the animals were awake during the day, there were also increases in heart rate and blood pressure (P < 0.05) but no significant change in metabolic rate or arterial Pco2. Dialysis with mCSF equilibrated with 25 or 80% CO2 reduced ECF pH by the same amount (25%) or three times more (80%) than when inspired CO2 was increased to 7%. During CO2 inhalation, the reduction in ECF pH was only 50% of the reduction in arterial pH. Finally, dialysis in vivo only decreased ECF pH by 19.1% of the change during dialysis in an in vitro system. We conclude that 1) the physiological responses to focal acidosis in the RO and RP are consistent with the existence of chemoreceptors in these nuclei, and 2) local pH buffering mechanisms act to minimize changes in brain pH during systemic induced acidosis and microdialysis focal acidosis and that these mechanisms could be as or more important to pH regulation than the small changes in inspiratory flow during a focal acidosis.  相似文献   

4.
In conscious rats, focal CO2 stimulation of the medullary raphe increases ventilation, whereas interference with serotonergic function here decreases the ventilatory response to systemic hypercapnia. We sought to determine whether repeated administration of a selective serotonin reuptake inhibitor in this region would increase the ventilatory response to hypercapnia in unanesthetized rats. In rats instrumented with electroencephalogram-electromyogram electrodes, 250 or 500 microM fluoxetine or artificial cerebrospinal fluid (aCSF) was microdialyzed into the medullary raphe for 30 min daily over 15 days. To compare focal and systemic treatment, two additional groups of rats received 10 mg x kg(-1) x day(-1) fluoxetine or vehicle systemically. Ventilation was measured in normocapnia and in 7% CO2 before treatment (day 0), acutely (days 1 or 3), on day 7, and on day 15. There was no change in normocapnic ventilation in any treatment group. Rats that received 250 microM fluoxetine microdialysis showed a significant 13% increase in ventilation in wakefulness during hypercapnia on day 7, due to an increase in tidal volume. In rats microdialyzed with 500 microM fluoxetine, there were 16 and 32% increases in minute ventilation during hypercapnia in wakefulness and sleep on day 7, and 20 and 28% increases on day 15, respectively, again due to increased tidal volume. There was no change in the ventilatory response to CO2 in rats microdialyzed with aCSF or in systemically treated rats. Chronic fluoxetine treatment in the medullary raphe increases the ventilatory response to hypercapnia in an unanesthetized rat model, an effect that may be due to facilitation of chemosensitive serotonergic neurons.  相似文献   

5.
Neurokinin-1 receptor immunoreactive (NK1R-ir) neurons and processes are widely distributed within the medulla, prominently at central chemoreceptor sites. Focal lesions of NK1R-ir neurons in the medullary raphe or the retrotrapezoid nucleus partially reduced the CO(2) response in conscious rats. We ask if NK1R-ir cells and processes over a wide region of the ventral medulla are essential for central and peripheral chemoreception by cisterna magna injection of SSP-SAP, a high-affinity version of substance P-saporin. After 22 days, NK1R-ir cell loss was -79% in the retrotrapezoid nucleus and -65% in the A5 region, which lie close to the ventral surface, and -38% in the medullary raphe and -49% in the pre-B?tzinger complex/rostral ventral respiratory group, which lie deeper. Dorsal chemoreceptor sites, the caudal nucleus tractus solitarius and the A6 region, were unaffected. At 8 and 22 days, these lesions produced 1) hypoventilation during air breathing in wakefulness ( approximately 8%) and in non-rapid eye movement (NREM) ( approximately 9%) and rapid eye movement ( approximately 14%) sleep, as measured over a 4-h period; 2) a substantially reduced ventilatory response to 7% CO(2) by 61% in wakefulness and 46-57% in NREM sleep; and 3) a decreased ventilatory response to 12% O(2) by 40% in wakefulness and 35% in NREM sleep at 8 days, with partial recovery by 22 days. NK1R-ir neurons in the ventral medulla are essential for normal central chemoreception, provide a drive to breathe, and modulate the peripheral chemoreceptor responses. These effects are not state dependent.  相似文献   

6.
To gain insight into why there are chemoreceptors at widespread sites in the brain, mircrotubules were chronically implanted at two or three sites in the medullary raphe nuclei of adult goats (n = 7). After >2 wk, microdialysis (MD) probes were inserted into the microtubules to create focal acidosis (FA) in the awake state using mock cerebral spinal fluid (mCSF) equilibrated with 6.4% (pH = 7.3), 50% (pH = 6.5), or 80% CO(2) (pH = 6.3), where MD with 50 and 80% CO(2) reduces tissue pH by 0.1 and 0.18 pH unit, respectively. There were no changes in all measured variables with MD with 6.4% at single or multiple raphe sites (P > 0.05). During FA at single raphe sites, only 80% CO(2) elicited physiological changes as inspiratory flow was 16.9% above (P < 0.05) control. However, FA with 50 and 80% CO(2) at multiple sites increased (P < 0.05) inspiratory flow by 18.4 and 30.1%, respectively, where 80% CO(2) also increased (P < 0.05) tidal volume, heart rate, CO(2) production, and O(2) consumption. FA with 80% CO(2) at multiple raphe sites also led to hyperventilation (-2 mmHg), indicating that FA had effects on breathing independent of an increased metabolic rate. We believe these findings suggest that the large ventilatory response to a global respiratory brain acidosis reflects the cumulative effect of stimulation at widespread chemoreceptor sites rather than a large stimulation at a single site. Additionally, focal acidification of raphe chemoreceptors appears to activate an established thermogenic response needed to offset the increased heat loss associated with the CO(2) hyperpnea.  相似文献   

7.
This study characterized ventilation, the airflow waveform, and diaphragmatic activity in response to hypoxia in the intact adult cat during sleep and wakefulness. Exposure to hypoxia for up to 3 h caused sustained hyperventilation during both wakefulness and sleep. Hyperventilation resulted from significant increases in minute ventilation due to increases in both tidal volume and frequency. Diaphragmatic activity changed significantly from augmenting activity with little postinspiratory-inspiratory activity (PIIA) in normoxia to augmenting activity with increased PIIA in hypoxia. The increase in PIIA was least in rapid eye movement sleep. These changes in diaphragmatic activity were associated with changes in airflow waveforms in inspiration and expiration. We conclude that the ventilatory response to hypoxia involves a change in the output of the central pattern generator and that the change is dependent in part on the state of consciousness.  相似文献   

8.
The major objective of this study was to gain insight into whether under physiological conditions medullary raphe area neurons influence breathing through CO(2)/H(+) chemoreceptors and/or through a postulated, nonchemoreceptor modulatory influence. Microtubules were chronically implanted into the raphe of adult goats (n = 13), and breathing at rest (awake and asleep), breathing during exercise, as well as CO(2) sensitivity were assessed repeatedly before and after sequential injections of the neurotoxins saporin conjugated to substance P [SP-SAP; neurokinin-1 receptor (NK1R) specific] and ibotenic acid (IA; nonspecific glutamate receptor excitotoxin). In all goats, microtubule implantation alone resulted in altered breathing periods, manifested as central or obstructive apneas, and fractionated breathing. The frequency and characteristics of the altered breathing periods were not subsequently affected by injections of the neurotoxins (P > 0.05). Three to seven days after SP-SAP or subsequent IA injection, CO(2) sensitivity was reduced (P < 0.05) by 23.8 and 26.8%, respectively, but CO(2) sensitivity returned to preinjection control values >7 days postinjection. However, there was no hypoventilation at rest (awake, non-rapid eye movement sleep, or rapid eye movement sleep) or during exercise after these injections (P > 0.05). The neurotoxin injections resulted in neuronal death greater than three times that with microtubule implantation alone and reduced (P < 0.05) both tryptophan hydroxylase-expressing (36%) and NK1R-expressing (35%) neurons at the site of injection. We conclude that both NK1R- and glutamate receptor-expressing neurons in the medullary raphe nuclei influence CO(2) sensitivity apparently through CO(2)/H-expressing chemoreception, but the altered breathing periods appear unrelated to CO(2) chemoreception and thus are likely due to non-chemoreceptor-related neuromodulation of ventilatory control mechanisms.  相似文献   

9.
To assess the effects of selective sleep loss on ventilation during recovery sleep, we deprived 10 healthy young adult humans of rapid-eye-movement (REM) sleep for 48 h and compared ventilation measured during the recovery night with that measured during the baseline night. At a later date we repeated the study using awakenings during non-rapid-eye-movement (NREM) sleep at the same frequency as in REM sleep deprivation. Neither intervention produced significant changes in average minute ventilation during presleep wakefulness, NREM sleep, or the first REM sleep period. By contrast, both interventions resulted in an increased frequency of breaths, in which ventilation was reduced below the range for tonic REM sleep, and in an increased number of longer episodes, in which ventilation was reduced during the first REM sleep period on the recovery night. The changes after REM sleep deprivation were largely due to an increase in the duration of the REM sleep period with an increase in the total phasic activity and, to a lesser extent, to changes in the relationship between ventilatory components and phasic eye movements. The changes in ventilation after partial NREM sleep deprivation were associated with more pronounced changes in the relationship between specific ventilatory components and eye movement density, whereas no change was observed in the composition of the first REM sleep period. These findings demonstrate that sleep deprivation leads to changes in ventilation during subsequent REM sleep.  相似文献   

10.

Histamine plays an important role in mediating wakefulness in mammals. Based on the findings from gene-manipulated mice, we provide several lines of evidence showing the roles of the histaminergic system in the somnogenic effects of prostaglandin (PG) D2 and adenosine, and in the arousal effects of PGE2 and orexin. PGD2 activates DP1 receptors (R) to promote sleep by stimulating them to release adenosine. The released adenosine activates adenosine A2AR and subsequently excites the ventrolateral preoptic area (VLPO), one of the sleep centers in the anterior hypothalamus. VLPO neurons then send inhibitory signals to downregulate the histaminergic tuberomammillary nucleus (TMN), which contributes to arousal. A1R is expressed in histaminergic neurons of the rat TMN. Adenosine in the TMN inhibits the histaminergic system via A1R and promotes non–rapid eye movement sleep. Conversely, both endogenous PGE2 and orexin activate the histaminergic system through EP4R and OX-2R, respectively, to promote wakefulness via histamine H1R. Furthermore, the arousal effect of ciproxifan, H3R antagonist, depends on the activation of histaminergic systems. These findings indicate that VLPO and TMN regulate sleep and wakefulness by means of a “flip-flop” mechanism operating in an anti-coincident manner during sleep–wake state transitions.

  相似文献   

11.
The effect of phasic eye movement activity on ventilation during rapid-eye-movement (REM) sleep was studied in seven healthy young adults by use of the respiratory inductive plethysmograph. Mean ventilation (VE) and ventilatory components during REM sleep were not significantly different from that seen in either stages 1-2 or 3-4 sleep. The percent of rib cage contribution to ventilation in REM sleep, 29.3 +/- 5.1%, was reduced compared with 54.4 +/- 5.8% in stage 1-2 and 52.2 +/- 4.3% in stage 3-4 sleep (P less than 0.005). When one separated breaths by the degree of associated phasic eye movement activity, it became apparent that breathing during REM sleep is very heterogeneous. Increasing eye movement activity was associated with inhibition of ventilation with a reduction in VE from 5.1 +/- 0.3 to 3.8 +/- 0.3 l/min. Tidal volume and frequency both fell, whereas inspiratory duration was unchanged. Compartmental ventilation was also affected, with the fall in the rib cage contribution from 37.8 +/- 6.4 to 15.3 +/- 5.6%. Chest wall and abdominal movement became more asynchronous as phasic-eye-movement activity increased and frank paradoxical breathing was seen.  相似文献   

12.
Drugs reported to stimulate fetal breathing (FB) were injected into a femoral vein of near-term fetal lambs during rapid eye movement (REM) and non-REM (NREM) sleep. The primary response to NaCN, 0.25-0.5 mg, a dose which did not flatten the electrocorticogram, was a brief burst of gasping in any sleep state. When injected during REM sleep, NaCN caused the cessation of spontaneous FB and the onset of gasping. Stimulation of FB was observed infrequently. Caffeine (10 mg) and doxapram (3 mg) frequently caused an immediate change in sleep state or arousal. The incidence of FB increased concomitantly with a change to REM sleep or wakefulness (W), but FB still ceased with the onset of NREM sleep. When administered during an episode of spontaneous FB during REM sleep, both caffeine and doxapram caused stimulation of the frequency and depth of breathing. Pilocarpine (4 mg) caused arousal and gasping followed by prolonged vigorous breathing that was dependent on intact carotid sinus nerves. Indomethacin (120 mg over several hours) did not affect sleep states but induced FB in both NREM and REM sleep. In summary, in the fetus the primary effect of NaCN is to suppress spontaneous FB and induce gasping and the effects of pilocarpine, caffeine, and doxapram are intimately related to sleep states or arousal. Indomethacin causes the conversion from episodic fetal to continuous postnatal-type breathing. These data indicate the importance of assessing fetal state of consciousness in interpreting the respiratory response to drugs.  相似文献   

13.
The response to inspiratory resistance loading (IRL) of the upper airway during sleep in children is not known. We, therefore, evaluated the arousal responses to IRL during sleep in children with the obstructive sleep apnea syndrome (OSAS) compared with controls. Children with OSAS aroused at a higher load than did controls (23 +/- 8 vs. 15 +/- 7 cmH(2)O. l(-1). s; P < 0.05). Patients with OSAS had higher arousal thresholds during rapid eye movement (REM) vs. non-REM sleep (P < 0.001), whereas normal subjects had lower arousal thresholds during REM (P < 0.005). Ventilatory responses to IRL were evaluated in the controls. There was a marked decrease in tidal volume both immediately (56 +/- 17% of baseline at an IRL of 15 cmH(2)O. l(-1). min; P < 0.001) and after 3 min of IRL (67 +/- 23%, P < 0.005). The duty cycle increased. We conclude that children with OSAS have impaired arousal responses to IRL. Despite compensatory changes in respiratory timing, normal children have a decrease in minute ventilation in response to IRL during sleep. However, arousal occurs before gas-exchange abnormalities.  相似文献   

14.
We tested the hypothesis that inhibition of neurons within the rostral ventral medulla (RVM) would prolong the laryngeal chemoreflex (LCR), a putative stimulus in the sudden infant death syndrome (SIDS). We studied the LCR in 19 piglets, age 3-16 days, by injecting 0.05 ml of saline or water into the larynx during wakefulness, non-rapid eye movement (NREM) sleep, and REM sleep, before and after 1 or 10 mM muscimol dialysis in the RVM. Muscimol prolonged the LCR (P < 0.05), and the prolongation was greater when the LCR was stimulated with water compared with saline (P < 0.02). The LCR was longer during NREM sleep than during wakefulness and longest during REM sleep (REM compared with wakefulness). Muscimol had no effect on the likelihood of arousal from sleep after LCR stimulation. We conclude that the RVM provides a tonic facilitatory drive to ventilation that limits the duration of the LCR, and loss of this drive may contribute to the SIDS when combined with stimuli that inhibit respiration.  相似文献   

15.

Narcolepsy is a debilitating sleep disorder characterized by excessive daytime sleepiness, cataplexy and intrusive rapid–eye movement sleep. Deficits in endogenous orexins are a major pathogenic component of the disease. This disorder is also associated with the gene marker HLADQB1*0602. Orexins as hypothalamic neuropeptides have multiple physiological functions, and their primary functions are regulation of the sleep–wake cycle and feeding. Evidence from animal studies using orexin knockout mice and focal microdialysis of an orexin receptor antagonist at the retrotrapezoid nucleus and medullary raphe in rats demonstrated that orexins also contribute to respiratory regulation in a vigilance state–dependent manner, as animals with orexin dysregulation have attenuated hypercapnic ventilatory responses predominantly in wakefulness. These findings are consistent with the notion that the activity of orexinergic neurons is higher during wake than sleep periods. Orexin neurons seem to be a pivotal link between conscious and unconscious brain functions in animals. The human model of hypocretin deficiency is patients with narcolepsy–cataplexy. In contrast to the findings suggested by animal studies, we found significant decreases in hypoxic responsiveness, but not in hypercapnic responsiveness, in narcoleptics, and further analysis indicated that decreased ventilatory responses to hypoxia in human narcolepsy–cataplexy is in relation to HLA-DQB1*0602 status, not hypocretin deficiency. This is confirmed by the fact that the hypoxic responsiveness was lower in HLA positive versus negative controls. Unlike in mice, hypocretin-1 is not a major factor contributing to depressed hypoxic responses in humans. Species differences may exist.

  相似文献   

16.
Since the early '60s, injections of a broad-spectrum muscarinic cholinergic agonist, carbachol, into the medial pontine reticular formation (mPRF) of cats have been extensively used as a tool with which to study the neural mechanisms of rapid eye movement (REM) sleep. During the last decade, new carbachol models of REM sleep were introduced, including chronically instrumented/behaving rats and "reduced" preparations such as decerebrate or anesthetized cats and rats. The combined results from these distinct models show interspecies similarities and differences. The dual nature, both REM sleep-promoting and wakefulness (or arousal)-promoting, of the cholinergic effects exerted within the mPRF is more strongly expressed in rats than in cats. This strengthens the possibility suggested by earlier central neuronal recordings that active wakefulness and REM sleep have extensive common neuronal substrates, and may have evolved from a common behavioral state. Carbachol studies using different intact and reduced models also suggest that powerful REM sleep episode-terminating effects originate in suprapontine structures. In contrast, the timing of REM sleep-like episodes in decerebrate models is determined by a pontomedullary neuronal network responsible for the generation of an ultradian cycle similar to the basic rest-activity cycle of N. Kleitman. Other presumed species differences, such as the more widespread distribution of carbachol-sensitive sites or the relative failure of carbachol to increase the duration of REM sleep episodes in rats when compared to cats, may be of a quantitative or technical nature. While carbachol and many other neurotransmitters and peptides microinjected into the mPRF evoke, enhance or suppress REM sleep, the most sensitive site(s) of their actions have not been fully mapped, and the nature of the cellular and neurochemical interactions taking place at the sites where carbachol triggers the REM sleep-like state remain largely unknown. Similarly, little is known about the pathways between the mPRF and medial medullary reticular formation, but the existing evidence suggests that they are reciprocal and essential for the generation of both natural and carbachol-induced REM sleep. Studies of the mesopontine cholinergic neurons, which are hypothesized to be the main source of endogenous acetylcholine for the mPRF, need to be extended to neurons of the mPRF and cells located functionally downstream from this important site for REM sleep, or both REM sleep and active wakefulness.  相似文献   

17.
The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during non-rapid eye movement sleep and rapid eye movement sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of non-rapid eye movement sleep and rapid eye movement sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration.  相似文献   

18.
In this study, we examined the cardiorespiratory patterns of harbour seal pups under normoxic/normocarbic (air), hypoxic/normocarbic (15%, 12%, and 9% O2 in air), and normoxic/hypercarbic (2%, 4%, and 6% CO2 in air) conditions while awake and sleeping on land. Animals were chronically instrumented to record electroencephalogram (EEG), electromyogram (EMG), and electrocardiogram (EKG) signals, which, along with respiration (whole-body plethysmography) and oxygen consumption (VO2), were recorded from animals breathing each gas mixture for 2-4 h on separate days. Our results show that for animals breathing air, VO2 was not significantly lower during slow-wave sleep (SWS; 7.71 +/- 0.39 mL O2 min(-1) kg(-1); all measurements are mean +/- SEM) than during wakefulness (WAKE; 8.80 +/- 0.25 mL O2 min(-1) kg(-1)) and was unaffected by changes in respiratory drive. Although there was no significant fall in VO2 associated with a decrease in arousal state, breathing frequency (f(R)) did decrease (from 18.80 +/- 1.50 breaths min(-1) in WAKE to 10.40 +/- 0.49 breaths min(-1) in SWS), while the incidence of long apneas (>20 s) increased (12.76 +/- 4.06 apneas h(-1) in WAKE and 31.95 +/- 2.37 apneas h(-1) in SWS). Breathing was rarely seen during rapid eye movement (REM) sleep. Tachypnea was present at all levels of increased respiratory drive; however, hypoxia induced a dramatic bradycardia regardless of arousal state, while hypercarbia produced a tachycardia in SWS only. The hypoxic and hypercarbic chemosensitivities of harbour seal pups were similar to those of terrestrial mammals; however, unlike terrestrial mammals, where hypoxic and hypercarbic sensitivities are often reduced during SWS, the sensitivity of harbour seal pups to hypoxia and hypercarbia remained unchanged during the decrease in arousal state from WAKE to SWS.  相似文献   

19.
One of the most significant problems facing older individuals is difficulty staying asleep at night and awake during the day. Understanding the mechanisms by which the regulation of sleep/wake goes awry with age is a critical step in identifying novel therapeutic strategies to improve quality of life for the elderly. We measured wake, non-rapid eye movement (NREM) and rapid-eye movement (REM) sleep in young (2–4 months-old) and aged (22–24 months-old) C57BL6/NIA mice. We used both conventional measures (i.e., bout number and bout duration) and an innovative spike-and-slab statistical approach to characterize age-related fragmentation of sleep/wake. The short (spike) and long (slab) components of the spike-and-slab mixture model capture the distribution of bouts for each behavioral state in mice. Using this novel analytical approach, we found that aged animals are less able to sustain long episodes of wakefulness or NREM sleep. Additionally, spectral analysis of EEG recordings revealed that aging slows theta peak frequency, a correlate of arousal. These combined analyses provide a window into the mechanisms underlying the destabilization of long periods of sleep and wake and reduced vigilance that develop with aging.  相似文献   

20.
The aim of this study was to test the hypothesis that the cells in the brain stem pedunculopontine tegmentum (PPT) are critically involved in the normal regulation of wakefulness and rapid eye movement (REM) sleep. To test this hypothesis, one of four different doses of the excitatory amino acid L-glutamate (15, 30, 60, and 90 ng) or saline (control vehicle) was microinjected unilaterally into the PPT while the effects on wakefulness and sleep were quantified in freely moving chronically instrumented rats. All microinjections were made during wakefulness and were followed by 6 h of polygraphic recording. Microinjection of 15- ng (0.08 nmol) and 30-ng (0.16 nmol) doses of L-glutamate into the PPT increased the total amount of REM sleep. Both doses of L-glutamate increased REM sleep at the expense of slow-wave sleep (SWS) but not wakefulness. Interestingly, the 60-ng (0.32 nmol) dose of L-glutamate increased both REM sleep and wakefulness. The total increase in REM sleep after the 60-ng dose of L-glutamate was significantly less than the increase from the 30-ng dose. The 90-ng (0.48 nmol) dose of L-glutamate kept animals awake for 2-3 h by eliminating both SWS and REM sleep. These results show that the L-glutamate microinjection into the PPT can increase wakefulness and/or REM sleep depending on the dosage. These findings support the hypothesis that excitation of the PPT cells is causal to the generation of wakefulness and REM sleep in the rat. In addition, the results of this study led to the identification of the PPT dosage of L-glutamate that optimally induces wakefulness and REM sleep. The knowledge of this optimal dose will be useful in future studies investigating the second messenger systems involved in the regulation of wakefulness and REM sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号