首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All gammaherpesviruses encode a virion glycoprotein positionally homologous to Epstein-Barr virus gp350. These glycoproteins are thought to be involved in cell binding, but little is known of the roles they might play in the whole viral replication cycle. We have analyzed the contribution of murine gammaherpesvirus 68 (MHV-68) gp150 to viral propagation in vitro and host colonization in vivo. MHV-68 lacking gp150 was viable and showed normal binding to fibroblasts and normal single-cycle lytic replication. Its capacity to infect glycosaminoglycan (GAG)-deficient CHO-K1 cells and NS0 and RAW264.7 cells, which express only low levels of GAGs, was paradoxically increased. However, gp150-deficient MHV-68 spread poorly through fibroblast monolayers, with reduced cell-free infectivity, consistent with a deficit in virus release. Electron microscopy showed gp150-deficient virions clustered on infected-cell plasma membranes. MHV-68-infected cells showed reduced surface GAG expression, suggesting that gp150 prevented virions from rebinding to infected cells after release by making MHV-68 infection GAG dependent. Surprisingly, gp150-deficient viruses showed only a transient lag in lytic replication in vivo and established normal levels of latency. Cell-to-cell virus spread and the proliferation of latently infected cells, for which gp150 was dispensable, therefore appeared to be the major route of virus propagation in an infected host.  相似文献   

2.
Murine gammaherpesvirus 68 (MHV-68) is a natural pathogen of murid rodents and displays similar pathobiological characteristics to those of the human gammaherpesvirus Epstein-Barr virus (EBV). However, in contrast to EBV, MHV-68 will replicate in epithelial cells in vitro. It has therefore been proposed that MHV-68 may be of use as a model for the study of gammaherpesviruses, EBV in particular, both in vitro and in vivo. The EBV homolog of herpes simplex virus glycoprotein B (gB), termed gp110, is somewhat unusual compared with those of many other herpesviruses. We therefore decided to characterize the homolog of gB encoded by MHV-68 (termed MHV gB) to observe the properties of a gammaherpesvirus gB produced in epithelial cells and also to test the relatedness of MHV-68 and EBV. The MHV gB-coding sequence was determined from cloned DNA. The predicted amino acid sequence shared closest homology with gammaherpesvirus gB homologs. Biochemical analysis showed that MHV gB was a glycoprotein with a molecular weight of 105,000. However, the glycans were of the N-linked, high-mannose type, indicating retention in the endoplasmic reticulum. In line with this, MHV gB was localized to the cytoplasm and nuclear margins of infected cells but was not detected on the cell surface or in virions. Additionally, anti-MHV gB antisera were nonneutralizing. Thus, the MHV gB was unlike many other herpesvirus gBs but was extremely similar to the EBV gB. This highlights the close relationship between MHV-68 and EBV and underlines the potential of MHV-68 as a model for EBV in epithelial cells both in vitro and in vivo.  相似文献   

3.
The human gammaherpesviruses Epstein-Barr virus and Kaposi Sarcoma-associated herpesvirus both contain a glycoprotein (gp350/220 and K8.1, respectively) that mediates binding to target cells and has been studied in great detail in vitro. However, there is no direct information on the role that these glycoproteins play in pathogenesis in vivo. Infection of mice by murid herpesvirus 4 strain 68 (MHV-68) is an established animal model for gammaherpesvirus pathogenesis and expresses an analogous glycoprotein, gp150. To elucidate the in vivo function of gp150, a recombinant MHV-68 deficient in gp150 production was generated (vgp150Delta). The productive viral replication in vitro and in vivo was largely unaffected by mutation of gp150, aside from a partial defect in the release of extracellular virus. Likewise, B-cell latency was established. However, the transient mononucleosis and spike in latently infected cells associated with the spread of MHV-68 to the spleen was significantly reduced in vgp150Delta-infected mice. A soluble, recombinant gp150 was found to bind specifically to B cells but not to epithelial cells in culture. In addition, gp150-deficient MHV-68 derived from mouse lungs bound less well to spleen cells than wild-type virus. Thus, gp150 is highly similar in function in vitro to the Epstein-Barr virus gp350/220. These results suggest a role for these analogous proteins in mononucleosis and have implications for their use as vaccine antigens.  相似文献   

4.
Herpesviruses remain predominantly cell associated within their hosts, implying that they spread between cells by a mechanism distinct from free virion release. We previously identified the efficient release of murine gammaherpesvirus 68 (MHV-68) virions as a function of the viral gp150 protein. Here we show that the MHV-68 ORF27 gene product, gp48, contributes to the direct spread of viruses from lytically infected to uninfected cells. Monoclonal antibodies to gp48 identified it on infected cell surfaces and in virions. gp48-deficient viruses showed no obvious deficit in virion cell binding, single-cycle replication, or virion release but had reduced lytic propagation between cells. After intranasal infection of mice, ORF27-deficient viruses were impaired predominantly in lytic replication in the lungs. There was a small deficit in latency establishment, but long-term latency appeared normal. Since ORF27 has homologs in both Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, it is likely part of a conserved mechanism employed by gammaherpesviruses to disseminate lytically in their hosts.  相似文献   

5.
Murine gammaherpesvirus 68 (MHV-68), Kaposi's sarcoma-associated herpesvirus (HHV-8), and Epstein-Barr virus (EBV) are all members of the gammaherpesvirus family, characterized by their ability to establish latency in lymphocytes. The RTA protein, conserved in all gammaherpesviruses, is known to play a critical role in reactivation from latency. Here we report that HHV-8 RTA, not EBV RTA, was able to induce MHV-68 lytic viral proteins and DNA replication and processing and produce viable MHV-68 virions from latently infected cells at levels similar to those for MHV-68 RTA. HHV-8 RTA was also able to activate two MHV-68 lytic promoters, whereas EBV RTA was not. In order to define the domains of RTA responsible for their functional differences in viral promoter activation and initiation of the MHV-68 lytic cycle, chimeric RTA proteins were constructed by exchanging the N-terminal and C-terminal domains of the RTA proteins. Our data suggest that the species specificity of MHV-68 RTA resides in the N-terminal DNA binding domain.  相似文献   

6.
Herpesviruses maintain long-term infectivity without marked antigenic variation. They must therefore evade neutralization by other means. Immune sera block murine gammaherpesvirus-68 (MHV-68) infection of fibroblasts, but fail to block and even enhance its infection of IgG Fc receptor-bearing cells, suggesting that the antibody response to infection is actually poor at ablating virion infectivity completely. Here we analyzed this effect further by quantitating the glycoprotein-specific antibody response of MHV-68 carrier mice. Gp150 was much the commonest glycoprotein target and played a predominant role in driving Fc receptor-dependent infection: when gp150-specific antibodies were boosted, Fc receptor-dependent infection increased; and when gp150-specific antibodies were removed, Fc receptor-dependent infection was largely lost. Neither gp150-specific monoclonal antibodies nor gp150-specific polyclonal sera gave significant virion neutralization. Gp150 therefore acts as an immunogenic decoy, distorting the MHV-68-specific antibody response to promote Fc receptor-dependent infection and so compromise virion neutralization. This immune evasion mechanism may be common to many non-essential herpesvirus glycoproteins.  相似文献   

7.
Viruses lack self-propulsion. To move in multi-cellular hosts they must therefore manipulate infected cells. Herpesviruses provide an archetype for many aspects of host manipulation, but only for alpha-herpesviruses in is there much information about they move. Other herpesviruses are not necessarily the same. Here we show that Murine gamma-herpesvirus-68 (MHV-68) induces the outgrowth of long, branched plasma membrane fronds to create an intercellular network for virion traffic. The fronds were actin-based and RhoA-dependent. Time-lapse imaging showed that the infected cell surface became highly motile and that virions moved on the fronds. This plasma membrane remodelling was driven by the cytoplasmic tail of gp48, a MHV-68 glycoprotein previously implicated in intercellular viral spread. The MHV-68 ORF58 was also required, but its role was simply transporting gp48 to the plasma membrane, since a gp48 mutant exported without ORF58 did not require ORF58 to form membrane fronds either. Together, gp48/ORF58 were sufficient to induce fronds in transfected cells, as were the homologous BDLF2/BMRF2 of Epstein-Barr virus. Gp48/ORF58 therefore represents a conserved module by which gamma-herpesviruses rearrange cellular actin to increase intercellular contacts and thereby promote their spread.  相似文献   

8.

Background

Murine gammaherpesvirus 68 (MHV-68) is used as a model to study the function of gammaherpesvirus glycoproteins. gp150 of MHV-68, encoded by open reading frame M7, is a positional homolog of gp350/220 of EBV and of gp35/37 of KSHV. Since it had been proposed that gp350/220 of EBV might be a suitable vaccine antigen to protect from EBV-associated diseases, gp150 has been applied as a model vaccine in the MHV-68 system. When analyzing the function of gp150, previous studies yielded conflicting results on the role of gp150 in latency amplification, and disparities between the mutant viruses which had been analyzed were blamed for the observed differences.

Results

To further develop MHV-68 as model to study the function of gammaherpesvirus glycoproteins in vivo, it is important to know whether gp150 contributes to latency amplification or not. Thus, we re-evaluated this question by testing a number of gp150 mutants side by side. Our results suggest that gp150 is dispensable for latency amplification. Furthermore, we investigated the effect of vaccination with gp150 using gp150-containing exosomes. Vaccination with gp150 induced a strong humoral and cellular immune response, yet it did not affect a subsequent MHV-68 challenge infection.

Conclusions

In this study, we found no evidence for a role of gp150 in latency amplification. The previously observed contradictory results on the role of gp150 in latency amplification were not related to differences between the mutant viruses which had been used.  相似文献   

9.
10.
Glycosaminoglycans (GAGs) commonly participate in herpesvirus entry. They are thought to provide a reversible attachment to cells that promotes subsequent receptor binding. Murine gamma-herpesvirus-68 (MHV-68) infection of fibroblasts and epithelial cells is highly GAG-dependent. This is a function of the viral gp150, in that gp150-deficient mutants are much less GAG-dependent than wild-type. Here we show that the major MHV-68 GAG-binding protein is not gp150 but gp70, a product of ORF4. Surprisingly, ORF4-deficient MHV-68 showed normal cell binding and was more sensitive than wild-type to inhibition by soluble heparin rather than less. Thus, the most obvious viral GAG interaction made little direct contribution to infection. Indeed, a large fraction of the virion gp70 had its GAG-binding domain removed by post-translational cleavage. ORF4 may therefore act mainly to absorb soluble GAGs and prevent them from engaging gp150 prematurely. In contrast to gp70, gp150 bound poorly to GAGs, implying that it provides little in the way of adhesion. We hypothesize that it acts instead as a GAG-sensitive switch that selectively activates MHV-68 entry at cell surfaces.  相似文献   

11.
Jia Q  Wu TT  Liao HI  Chernishof V  Sun R 《Journal of virology》2004,78(12):6610-6620
Murine gammaherpesvirus 68 (MHV-68) is genetically related to the human gammaherpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) and Epstein-Barr virus (EBV). It has been proposed as a model for gammaherpesvirus infection and pathogenesis. Open reading frame 31 (ORF31) is conserved among the Beta- and Gammaherpesvirinae subfamily, and there is no known mammalian homologue of this protein. The function of MHV-68 ORF31 and its viral homologues has not yet been determined. We described here a primary characterization of this protein and its requirement for lytic replication. The native MHV-68 ORF31 was detected at peak levels by 24 h postinfection, and the FLAG-tagged and green fluorescent protein fusion ORF31 were localized in the cytoplasm and nucleus in a diffuse pattern. Two independent experimental approaches were then utilized to demonstrate that ORF31 was required for lytic replication. First, small interfering RNA generated against ORF31 expression blocked protein expression and virus production in transfected cells. Then, two-independent bacterial artificial chromosome-derived ORF31-null MHV-68 mutants (31STOP) were generated and found to be defective in virus production in fibroblast cells. This defect can be rescued in trans by MHV-68 ORF31 and importantly by its KSHV homologue. A repair virus of 31STOP was also generated by homologous recombination in fibroblast cells. Finally, we showed that the defect in ORF31 blocked late lytic protein expression. Our results demonstrate that MHV-68 ORF31 is required for viral lytic replication, and its function is conserved in its KSHV homologue.  相似文献   

12.
13.
Two monoclonal antibodies were prepared against varicella-zoster virus proteins. One of the monoclonal antibodies (10.2) reacted only with the nuclei of infected cells and immunoprecipitated one nonglycosylated late viral protein (125,000 molecular weight). The other monoclonal antibody (19.1) with neutralizing activity, reacted with membrane antigens of infected cells and with the varicella-zoster virus envelope and immunoprecipitated two late major viral glycoproteins (gp1 and gp3). Synthesis of the 125,000-molecular-weight protein, gp1, and gp3 began at 20 to 22 h postinfection, 2 h after the peak of viral DNA synthesis, and continued until 29 h postinfection, when the first progeny virus appeared in infected cells. Pulse-chase experiments showed that during pulse-labeling, only gp1 was detected, whereas during the chase period, gp1 as well as gp3 was detected in infected cells. Under nonreducing conditions, gp3 migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a 130,000-molecular-weight protein as compared with the 62,000-molecular-weight species obtained when gels were resolved under reducing conditions. This finding indicates that gp3 is a dimer that is disulfide linked.  相似文献   

14.
Infection with the human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi''s sarcoma-associated herpesvirus (KSHV), is associated with several cancers. During lytic replication of herpesviruses, viral genes are expressed in an ordered cascade. However, the mechanism by which late gene expression is regulated has not been well characterized in gammaherpesviruses. In this study, we have investigated the cis element that mediates late gene expression during de novo lytic infection with murine gammaherpesvirus 68 (MHV-68). A reporter system was established and used to assess the activity of viral late gene promoters upon infection with MHV-68. It was found that the viral origin of lytic replication, orilyt, must be on the reporter plasmid to support activation of the late gene promoter. Furthermore, the DNA sequence required for the activation of late gene promoters was mapped to a core element containing a distinct TATT box and its neighboring sequences. The critical nucleotides of the TATT box region were determined by systematic mutagenesis in the reporter system, and the significance of these nucleotides was confirmed in the context of the viral genome. In addition, EBV and KSHV late gene core promoters could be activated by MHV-68 lytic replication, indicating that the mechanisms controlling late gene expression are conserved among gammaherpesviruses. Therefore, our results on MHV-68 establish a solid foundation for mechanistic studies of late gene regulation.  相似文献   

15.
16.
Bacillus brevis 47 had two protein layers (the outer and middle walls) and a peptidoglycan layer (the inner wall) and contained two major proteins with approximate molecular weights of 130,000 and 150,000 in the cell wall. Both the total and Triton-insoluble envelopes revealed a hexagonal lattice array with a lattice constant of 14.5 nm. The proteins of 130,000 and 150,000 molecular weight isolated from the Triton-insoluble envelopes were serologically different from each other and assembled in vitro on the peptidoglycan layer. A mixture of 130,000- and 150,000-molecular-weight proteins led to the formation of a five-layered cell wall structure, two layers on each side of the peptidoglycan layer, which resembled closely the Triton-insoluble envelopes. A three-layered cell wall structure, one layer on each side of the peptidoglycan layer, was reconstituted when only the 150,000-molecular-weight protein was used. Both five- and three-layered cell walls reconstituted in vitro also contained hexagonally arranged arrays with the same lattice constant as that of the total and Triton-insoluble envelopes. A mutant, strain 47-57, which was isolated as a phage-resistant colony, had a two-layered cell wall consisting of the middle and inner wall layers and contained only 150,000-molecular-weight protein as the major cell wall protein. The cell envelopes of the mutant revealed the hexagonal arrays with the same lattice constant as that of the wild-type cell envelopes. We conclude that the outer and middle wall layers consist of proteins with approximate molecular weights of 130,000 and 150,000, respectively. Furthermore, the 150,000-molecular-weight protein formed the hexagonal arrays in the middle wall layer.  相似文献   

17.
Tegument is the unique structure of a herpesvirion which occupies the space between nucleocapsid and envelope. Accumulating data have indicated that interactions among tegument proteins play a key role in virion morphogenesis. Morphogenesis of gammaherpesviruses including Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) is poorly understood due to the lack of efficient de novo lytic replication in cell culture. Murine gammaherpesvirus-68 (MHV-68) is genetically related to these two human herpesviruses and serves as an effective model to study the lytic replication of gammaherpesviruses. We previously showed that ORF33 of MHV-68 encodes a tegument protein and plays an essential role in virion maturation in the cytoplasm. However, the molecular mechanism of how ORF33 participates in virion morphogenesis has not been elucidated. In this study we demonstrated that ORF38 of MHV-68 is also a tegument protein and is localized to cytoplasmic compartments during both transient transfection and viral infection. Immuno-gold labeling assay showed that ORF38 is only present on virions that have entered the cytoplasmic vesicles, indicating that ORF38 is packaged into virions during secondary envelopment. We further showed that ORF38 co-localizes with ORF33 during viral infection; therefore, the interaction between ORF38 and ORF33 is conserved among herpesviruses. Notably, we found that although ORF33 by itself is distributed in both the nucleus and the cytoplasm, in the presence of ORF38, ORF33 is co-localized to trans-Golgi network (TGN), a site where secondary envelopment takes place.  相似文献   

18.
19.
Wang L  Guo H  Reyes N  Lee S  Bortz E  Guo F  Sun R  Tong L  Deng H 《Journal of virology》2012,86(3):1348-1357
Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus are etiologically associated with several types of human malignancies. However, as these two human gammaherpesviruses do not replicate efficiently in cultured cells, the morphogenesis of gammaherpesvirus virions is poorly understood. Murine gammaherpesvirus 68 (MHV-68) provides a tractable model to define common, conserved features of gammaherpesvirus biology. ORF52 of MHV-68 is conserved among gammaherpesviruses. We have previously shown that this tegument protein is essential for the envelopment and egress of viral particles and solved the crystal structure of ORF52 dimers. To more closely examine its role in virion maturation, we performed immunoelectron microscopy of MHV-68-infected cells and found that ORF52 localized to both mature, extracellular virions and immature viral particles in the cytoplasm. ORF52 consists of three α-helices followed by one β-strand. To understand the structural requirements for ORF52 function, we constructed mutants of ORF52 and examined their ability to complement an ORF52-null MHV-68 virus. Mutations in conserved residues in the N-terminal α1-helix and C terminus, or deletion of the α2-helix, resulted in a loss-of-function phenotype. Furthermore, the α1-helix was crucial for the predominantly punctate cytoplasmic localization of ORF52, while the α2-helix was a key domain for ORF52 dimerization. Immunoprecipitation experiments demonstrated that ORF52 interacts with another MHV-68 tegument protein, ORF42; however, a single point mutation in R95 in the C terminus of ORF52 led to the loss of this interaction. Moreover, the homologues of MHV-68 ORF52 in Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus complement the defect in ORF52-null MHV-68 and interact with MHV-68 ORF52. Taken together, these data uncover the relationship between the α-helical structure and the molecular basis for ORF52 function. This is the first structure-based functional domain mapping study for an essential gammaherpesvirus tegument protein.  相似文献   

20.
Murine gammaherpesvirus 68 (MHV-68) has been developed as a model for the human gammaherpesviruses Epstein-Barr virus and human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus (HHV-8/KSHV), which are associated with several types of human diseases. Open reading frame 45 (ORF45) is conserved among the members of the Gammaherpesvirinae subfamily and has been suggested to be a virion tegument protein. The repression of ORF45 expression by small interfering RNAs inhibits MHV-68 viral replication. However, the gene product of MHV-68 ORF45 and its function have not yet been well characterized. In this report, we show that MHV-68 ORF45 is a phosphorylated nuclear protein. We constructed an ORF45-null MHV-68 mutant virus (45STOP) by the insertion of translation termination codons into the portion of the gene encoding the N terminus of ORF45. We demonstrated that the ORF45 protein is essential for viral gene expression immediately after the viral genome enters the nucleus. These defects in viral replication were rescued by providing ORF45 in trans or in an ORF45-null revertant (45STOP.R) virus. Using a transcomplementation assay, we showed that the function of ORF45 in viral replication is conserved with that of its KSHV homologue. Finally, we found that the C-terminal 23 amino acids that are highly conserved among the Gammaherpesvirinae subfamily are critical for the function of ORF45 in viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号