首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of post-translational modifications of human heparin cofactor II isolated from human serum and from recombinant Chinese hamster ovary cells and their effects on heparin binding have been characterized. Oligosaccharide chains were found attached to all three potential N-glycosylation sites in both protein preparations. The carbohydrate structures of heparin cofactor II circulating in blood are complex-type diantennary and triantennary chains in a ratio of 6 : 1 with the galactose being > 90% sialylated with alpha 2-->6 linked N-acetylneuraminic acid. About 50% of the triantennary structures contain one sLe(x) motif. Proximal alpha 1-->6 fucosylation of oligosacharides from Chinese hamster ovary cell-derived HCII was detected in > 90% of the diantennary and triantennary glycans, the latter being slightly less sialylated with exclusively alpha 2-->3-linked N-acetylneuraminic acid units. Applying the ESI-MS/ MS-MS technique, we demonstrate that the tryptic peptides comprising tyrosine residues in positions 60 and 73 were almost completely sulfated irrespective of the protein's origin. Treatment of transfected Chinese hamster ovary cells with chlorate or tunicamycin resulted in the production of heparin cofactor II molecules that eluted with higher ionic strength from heparin-Sepharose, indicating that tyrosine sulfation and N-linked glycans may affect the inhibitor's interaction with glycosaminoglycans.  相似文献   

2.
Activation of heparin cofactor II by heparin oligosaccharides   总被引:1,自引:0,他引:1  
Heparin was partially depolymerized with heparinase or nitrous acid. The resulting oligosaccharides were fractionated by gel filtration chromatography and tested for the ability to stimulate inhibition of thrombin by purified heparin cofactor II or antithrombin. Oligosaccharides containing greater than or equal to 18 monosaccharide units were active with antithrombin, while larger oligosaccharides were required for activity with heparin cofactor II. Intact heparin molecules fractionated on a column of immobilized antithrombin were also tested for activity with both inhibitors. The relative specific activities of the unbound heparin molecules were 0.06 with antithrombin and 0.76 with heparin cofactor II in comparison to unfractionated heparin (specific activity = 1.00). We conclude that heparin molecules much greater than 18 monosaccharide units in length are required for activity with heparin cofactor II and that the high-affinity antithrombin-binding structure of heparin is not required.  相似文献   

3.
Heparin cofactor II (HCII) is a serpin whose thrombin inhibition activity is accelerated by glycosaminoglycans. We describe the novel properties of a carboxyl-terminal histidine-tagged recombinant HCII (rHCII-CHis(6)). Thrombin inhibition by rHCII-CHis(6) was increased >2-fold at approximately 5 microgram/ml heparin compared with wild-type recombinant HCII (wt-rHCII) at 50-100 microgram/ml heparin. Enhanced activity of rHCII-CHis(6) was reversed by treatment with carboxypeptidase A. We assessed the role of the HCII acidic domain by constructing amino-terminal deletion mutants (Delta1-52, Delta1-68, and Delta1-75) in wt-rHCII and rHCII-CHis(6). Without glycosaminoglycan, unlike wt-rHCII deletion mutants, the rHCII-CHis(6) deletion mutants were less active compared with full-length rHCII-CHis(6). With glycosaminoglycans, Delta1-68 and Delta1-75 rHCIIs were all less active. We assessed the character of the tag by comparing rHCII-CHis(6), rHCII-CAla(6), and rHCII-CLys(6) to wt-rHCII. Only rHCII-CHis(6) had increased activity with heparin, whereas all three mutants have increased heparin binding. We generated a carboxyl-terminal histidine-tagged recombinant antithrombin III to study the tag on another serpin. Interestingly, this mutant antithrombin III had reduced heparin cofactor activity compared with wild-type protein. In a plasma-based assay, the glycosaminoglycan-dependent inhibition of thrombin by rHCII-CHis(6) was significantly greater compared with wt-rHCII. Thus, HCII variants with increased function, such as rHCII-CHis(6), may offer novel reagents for clinical application.  相似文献   

4.
Role of lysine 173 in heparin binding to heparin cofactor II   总被引:1,自引:0,他引:1  
Heparin cofactor II (HC) is a plasma serine proteinase inhibitor (serpin) that inhibits alpha-thrombin in a reaction that is dramatically enhanced by heparin and other glycosaminoglycans/polyanions. We investigated the glycosaminoglycan binding site in HC by: (i) chemical modification with pyridoxal 5'-phosphate (PLP) in the absence and presence of heparin and dermatan sulfate; (ii) molecular modeling; and (iii) site-directed oligonucleotide mutagenesis. Four lysyl residues (173, 252, 343, and 348) were protected from modification by heparin and to a lesser extent by dermatan sulfate. Heparin-protected PLPHC retained both heparin cofactor and dermatan sulfate cofactor activity while dermatan sulfate-protected PLPHC retained some dermatan sulfate cofactor activity and little heparin cofactor activity. Molecular modeling studies revealed that Lys173 and Lys252 are within a region previously shown to contain residues involved in glycosaminoglycan binding. Lys343 and Lys348 are distant from this region, but protection by heparin and dermatan sulfate might result from a conformational change following glycosaminoglycan binding to the inhibitor. Site-directed mutagenesis of Lys173 and Lys343 was performed to further dissect the role of these two regions during HC-heparin and HC-dermatan sulfate interactions. The Lys343----Asn or Thr mutants had normal or only slightly reduced heparin or dermatan sulfate cofactor activity and eluted from heparin-Sepharose at the same ionic strength as native recombinant HC. However, the Lys173----Gln or Leu mutants had greatly reduced heparin cofactor activity and eluted from heparin-Sepharose at a significantly lower ionic strength than native recombinant HC but retained normal dermatan sulfate cofactor activity. Our results demonstrate that Lys173 is involved in the interaction of HC with heparin but not with dermatan sulfate, whereas Lys343 is not critical for HC binding to either glycosaminoglycan. These data provide further evidence for the determinants required for glycosaminoglycan binding to HC.  相似文献   

5.
Heparin cofactor II (HCII) is a plasma serine protease inhibitor whose ability to inhibit alpha-thrombin is accelerated by a variety of sulfated polysaccharides in addition to heparin and dermatan sulfate. Previous investigations have indicated that calcium spirulan (Ca-SP), a novel sulfated polysaccharide, enhanced the rate of inhibition of alpha-thrombin by HCII. In this study, we investigated the mechanism of the activation of HCII by Ca-SP. Interestingly, in the presence of Ca-SP, an N-terminal deletion mutant of HCII (rHCII-Delta74) inhibited alpha-thrombin, as native recombinant HCII (native rHCII) did. The second-order rate constant for the inhibition of alpha-thrombin by rHCII-Delta74 was 2.0 x 10(8) M(-1) min(-1) in the presence of 50 microgram/ml Ca-SP and 10, 000-fold higher than in the absence of Ca-SP. The rates of native rHCII and rHCII-Delta74 for the inhibition of gamma-thrombin were increased only 80- and 120-fold, respectively. Our results suggested that the anion-binding exosite I of alpha-thrombin was essential for the rapid inhibition reaction by HCII in the presence of Ca-SP and that the N-terminal acidic domain of HCII was not required. Therefore, we proposed a mechanism by which HCII was activated allosterically by Ca-SP and could interact with the anion-binding exosite I of thrombin not through the N-terminal acidic domain of HCII. The Arg(103) --> Leu mutant bound to Ca-SP-Toyopearl with normal affinity and inhibited alpha-thrombin in a manner similar to native rHCII. These results indicate that Arg(103) in HCII molecule is not critical for the interaction with Ca-SP.  相似文献   

6.
Human plasma heparin cofactor II (HCII) inhibits thrombin by rapidly forming a stable, equimolar complex in the presence of heparin or dermatan sulfate. Cultured human hepatoma-derived cells (PLC/PRF-5) secreted (approximately equal to 200 ng/ml in 3 days) a protein of MW - 72 kD that was immunoisolated and immunoblotted with anti-HCII, co-migrated on SDS-PAGE with human plasma HCII, and formed covalent complexes with thrombin (MW - 101 kD) in the presence but not absence of heparin or dermatan sulfate; these complexes co-migrated with those obtained by incubating thrombin with human plasma under the same conditions. HCII was not detectable (less than 0.13 ng/ml) in post-culture medium from cultured human umbilical vein endothelial cells or human foreskin fibroblasts.  相似文献   

7.
Eckert R  Ragg H 《FEBS letters》2003,541(1-3):121-125
The effects of bivalent cations on heparin binding, structure, and thrombin inhibition rates of heparin cofactor II were examined. Zn(2+) - and to a lesser extent Cu(2+) and Ni(2+) - enhanced the interaction between heparin cofactor II and heparin as demonstrated by heparin affinity chromatography and surface plasmon resonance experiments. Metal chelate chromatography and increased intrinsic protein fluorescence in the presence of Zn(2+) indicated that heparin cofactor II has metal ion-binding properties. The results are compatible with the hypothesis that Zn(2+) induces a conformational change in heparin cofactor II that favors its interaction with heparin.  相似文献   

8.
Evidence for essential lysines in heparin cofactor II   总被引:1,自引:0,他引:1  
Covalent modification with pyridoxal 5'-phosphate was used to study the function of lysyl residues in heparin cofactor II, a heparin-dependent plasma protease inhibitor. Reduction of the Schiff base with sodium borohydride resulted in modification of 3-4 lysyl residues of heparin cofactor II at high concentrations of pyridoxal 5'-phosphate, one of which was protected in the presence of heparin. The antithrombin activity of modified heparin cofactor II was enhanced compared to the native protein. However, the heparin cofactor activity for thrombin inhibition was reduced significantly or completely eliminated in the modified protease inhibitor depending on the extent of phosphopyridoxylation. In contrast to native heparin cofactor II, the modified protease inhibitor did not bind to a heparin-agarose column. The results suggest that lysyl residues are essential for heparin cofactor activity during thrombin inhibition.  相似文献   

9.
10.
The serpin heparin cofactor II (HCII) is a glycosaminoglycan-activated inhibitor of thrombin that circulates at a high concentration in the blood. The antithrombotic effect of heparin, however, is due primarily to the specific interaction of a fraction of heparin chains with the related serpin antithrombin (AT). What currently prevents selective therapeutic activation of HCII is the lack of knowledge of the determinants of glycosaminoglycan binding specificity. In this report we investigate the heparin binding properties of HCII and conclude that binding is nonspecific with a minimal heparin length of 13 monosaccharide units required and affinity critically dependent on ionic strength. Rapid kinetics of heparin binding indicate an induced fit mechanism that involves a conformational change in HCII. Thus, HCII binds to heparin in a manner analogous to the interaction of AT with low affinity heparin. A fully allosteric 2000-fold heparin activation of thrombin inhibition by HCII is demonstrated for heparin chains up to 26 monosaccharide units in length. We conclude that the heparin-binding mechanism of HCII is closely analogous to that of AT and that the induced fit mechanism suggests the potential design or discovery of specific HCII agonists.  相似文献   

11.
Leukocyte chemoattractant peptides from the serpin heparin cofactor II   总被引:4,自引:0,他引:4  
Heparin cofactor II (HC) is a plasma serine proteinase inhibitor (serpin) that inhibits the coagulant proteinase alpha-thrombin. We have recently demonstrated that proteolysis of HC by catalytic amounts of polymorphonuclear leukocyte proteinases (elastase or cathepsin G) generates leukocyte chemotaxins (Hoffman, M., Pratt, C. W., Brown, R. L., and Church, F. C. (1989) Blood 73, 1682-1685). One of four peptides produced when HC is degraded by neutrophil elastase has chemotactic activity for both monocytes and neutrophils with maximal migration comparable to formyl-Met-Leu-Phe, the "gold standard" bacterially derived chemotaxin. The amino-terminal sequence of this HC peptide is Asp-Phe-His-Lys-Glu-Asn-Thr-Val-... and the peptide corresponds to Asp-39 to Ile-66 of HC. A variety of synthetic peptides derived from this sequence were evaluated for leukocyte migration activity, and a dodecapeptide from Asp-49 to Tyr-60 (Asp-Trp-Ile-Pro-Glu-Gly-Glu-Glu-Asp-Asp-Asp-Tyr) was identified as the active site for leukocyte chemotactic action. The 12-mer synthetic peptide possesses significant neutrophil chemotactic action at 1 nM (60% of the maximal activity of formyl-Met-Leu-Phe), while a peptide with the reverse sequence has essentially no chemotactic activity. Cross-desensitization experiments also show that pretreatment of neutrophils with a 19-mer peptide (Asn-48 to Ile-66) greatly reduces subsequent chemotaxis to HC-neutrophil elastase proteolysis reaction products. When injected intraperitoneally in mice, the HC-neutrophil elastase digest elicits neutrophil migration. Our results demonstrate that not only does HC function as a thrombin inhibitor, but that limited proteolysis of HC near the amino terminus yields biologically active peptide(s) which might participate in inflammation and in wound healing and tissue repair processes.  相似文献   

12.
13.
Calcium spirulan (Ca-SP), a novel sulfated polysaccharide, increases the rate of thrombin inhibition by heparin cofactor II (HCII) more than 1000-fold through a mechanism not requiring the amino-terminal acidic domain of HCII. Activation of HCII by Ca-SP was molecular-weight dependent. Furthermore, HD22, an aptamer that binds exosite II of thrombin, produced a concentration-dependent, 15-fold reduction at 5 microM in the rate of thrombin inhibition by HCII with Ca-SP, suggesting that Ca-SP interacts with exosite II of thrombin. Mutations of Lys173 to Leu (K173L) and Arg189 to Leu (R189L) in the HCII molecule resulted in large decreases in the rate of thrombin inhibition mediated by Ca-SP and in the NaCl concentration needed for elution from Ca-SP-Toyopearl. Mutations of Lys173 to Arg (K173R) and Arg189 to Lys (R189K) showed inhibition of thrombin similar to wild-type rHCII (wt-rHCII). These results indicate that Ca-SP binds to the positive charges of Lys173 and Arg189 on the HCII molecule. In the thrombin inhibitory process by HCII, Ca-SP appears to play as a template by binding to both thrombin and HCII.  相似文献   

14.
The heparin cofactor II (HCII)/thrombin inhibition reaction is enhanced by various carboxylate polyanions. In the presence of polyaspartic acid, the HCII/thrombin reaction is accelerated more than 1000-fold with the second-order rate constant increasing from 3.2 x 10(4) M-1 min-1 (in the absence of polyAsp) to 3.6 x 10(7) M-1 min-1 as the polyAsp concentration is increased from 1 to 250 micrograms/ml. This accelerating effect was observed for HCII/thrombin, though to varying degrees, with other carboxylate polyanions. In contrast to HCII, the rate of antithrombin III inhibition of thrombin was decreased in the presence of polyAsp. The HCII/thrombin complex is rapidly formed in the presence of 10 micrograms/ml polyAsp when 125I-labeled-thrombin is incubated with plasma. It is possible that at physiological sites rich in carboxylate polyanions, thrombin may be preferentially inhibited by HCII.  相似文献   

15.
Irreversible inactivation of α-thrombin (T) by the serpin, heparin cofactor II (HCII), is accelerated by ternary complex formation with the glycosaminoglycans (GAGs) heparin and dermatan sulfate (DS). Low expression of human HCII in Escherichia coli was optimized by silent mutation of 27 rare codons and five secondary Shine-Dalgarno sequences in the cDNA. The inhibitory activities of recombinant HCII, and native and deglycosylated plasma HCII, and their affinities for heparin and DS were compared. Recombinant and deglycosylated HCII bound heparin with dissociation constants (KD) of 6 ± 1 and 7 ± 1 μM, respectively, ∼6-fold tighter than plasma HCII, with KD 40 ± 4 μM. Binding of recombinant and deglycosylated HCII to DS, both with KD 4 ± 1 μM, was ∼4-fold tighter than for plasma HCII, with KD 15 ± 4 μM. Recombinant HCII, lacking N-glycosylation and tyrosine sulfation, inactivated α-thrombin with a 1:1 stoichiometry, similar to plasma HCII. Second-order rate constants for thrombin inactivation by recombinant and deglycosylated HCII were comparable, at optimal GAG concentrations that were lower than those for plasma HCII, consistent with its weaker GAG binding. This weaker binding may be attributed to interference of the Asn169N-glycan with the HCII heparin-binding site.  相似文献   

16.
We determined the role of specific thrombin "exosites" in the mechanism of inhibition by the plasma serine proteinase inhibitors heparin cofactor II (HC) and antithrombin (AT) in the absence and presence of a glycosaminoglycan by comparing the inhibition of alpha-thrombin to epsilon- and gamma T-thrombin (produced by partial proteolysis of alpha-thrombin by elastase and trypsin, respectively). All of the thrombin derivatives were inhibited in a similar manner by AT, either in the absence or presence of heparin, which confirmed the integrity of both heparin binding abilities and serpin reactivities of epsilon- and gamma T-thrombin compared to alpha-thrombin. Antithrombin activities of HC in the absence of a glycosaminoglycan with alpha-, epsilon, and gamma T-thrombin were similar with rate constants of 3.5, 2.4, and 1.2 x 10(4) M-1 min-1, respectively. Interestingly, in the presence of glycosaminoglycans the maximal inhibition rate constants by HC with heparin and dermatan sulfate, respectively, were as follows: 30.0 x 10(7) and 60.5 x 10(7) for alpha-thrombin, 14.6 x 10(7) and 24.3 x 10(7) for epsilon-thrombin, and 0.017 x 10(7) and 0.034 x 10(7) M-1 min-1 for gamma T-thrombin. A hirudin carboxyl-terminal peptide, which binds to anion-binding exosite-I of alpha-thrombin, dramatically reduced alpha-thrombin inhibition by HC in the presence of heparin but not in its absence. We analyzed our results in relation to the recently determined x-ray structure of D-Phe-Pro-Arg-chloromethyl ketone-alpha-thrombin (Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S. R., and Hofsteenge, J. (1989) EMBO J. 8, 3467-3475). Our results suggest that the beta-loop region of anion-binding exosite-I in alpha-thrombin, which is not present in gamma T-thrombin, is essential for the rapid inhibition reaction by HC in the presence of a glycosaminoglycan. Therefore, alpha-thrombin and its derivatives would be recognized and inhibited differently by HC and AT in the presence of a glycosaminoglycan.  相似文献   

17.
Interaction of heparin cofactor II with neutrophil elastase and cathepsin G   总被引:1,自引:0,他引:1  
We investigated the interaction of the human plasma proteinase inhibitor heparin cofactor II (HC) with human neutrophil elastase and cathepsin G in order to examine 1) proteinase inhibition by HC, 2) inactivation of HC, and 3) the effect of glycosaminoglycans on inhibition and inactivation. We found that HC inhibited cathepsin G, but not elastase, with a rate constant of 6.0 x 10(6) M-1 min-1. Inhibition was stable, with a dissociation rate constant of 1.0 x 10(-3) min-1. Heparin and dermatan sulfate diminished inhibition slightly. Both neutrophil elastase and cathepsin G at catalytic concentrations destroyed the thrombin inhibition activity of HC. Inactivation was accompanied by a dramatic increase in heat stability, as occurs with other serine proteinase inhibitors. Proteolysis of HC (Mr 66,000) produced a species (Mr 58,000) that retained thrombin inhibition activity, and an inactive species of Mr 48,000. Amino acid sequence analysis led to the conclusion that both neutrophil elastase and cathepsin G cleave HC at Ile66, which does not affect HC activity, and at Val439, near the reactive site Leu444, which inactivates HC. Since cathepsin G is inhibited by HC and also inactivates HC, we conclude that cathepsin G participates in both reactions simultaneously so that small amounts of cathepsin G can inactivate a molar excess of HC. High concentrations of heparin and dermatan sulfate accelerated inactivation of HC by neutrophil proteinases, with heparin having a greater effect. Heparin and dermatan sulfate appeared to alter the pattern, and not just the rate, of proteolysis of HC. We conclude that while HC is an effective inhibitor of cathepsin G, it can be proteolyzed by neutrophil proteinases to generate first an active inhibitor and then an inactive molecule. This two-step mechanism might be important in the generation of chemotactic activity from the amino-terminal region of HC.  相似文献   

18.
19.
Thrombin (T) inactivation by the serpin, heparin cofactor II (HCII), is accelerated by the glycosaminoglycans (GAGs) dermatan sulfate (DS) and heparin (H). Equilibrium binding and thrombin inactivation kinetics at pH 7.8 and ionic strength (I) 0.125 m demonstrated that DS and heparin bound much tighter to thrombin (K(T(DS)) 1-5.8 microm; K(T(H)) 0.02-0.2 microm) than to HCII (K(HCII(DS)) 236-291 microm; K(HCII(H)) 25-35 microm), favoring formation of T.GAG over HCII.GAG complexes as intermediates for T.GAG.HCII complex assembly. At [GAG] < K(HCII(GAG)) the GAG and HCII concentration dependences of the first-order inactivation rate constants (k(app)) were hyperbolic, reflecting saturation of T.GAG complex and formation of the T.GAG.HCII complex from T.GAG and free HCII, respectively. At [GAG] > K(HCII(GAG)), HCII.GAG complex formation caused a decrease in k(app). The bell-shaped logarithmic GAG dependences fit an obligatory template mechanism in which free HCII binds GAG in the T.GAG complex. DS and heparin bound fluorescently labeled meizothrombin(des-fragment 1) (MzT(-F1)) with K(MzT(-F1)(GAG)) 10 and 20 microm, respectively, demonstrating a binding site outside of exosite II. Exosite II ligands did not attenuate the DS-accelerated thrombin inactivation markedly, but DS displaced thrombin from heparin-Sepharose, suggesting that DS and heparin share a restricted binding site in or nearby exosite II, in addition to binding outside exosite II. Both T.DS and MzT(-F1).DS interactions were saturable at DS concentrations substantially below K(HCII(DS)), consistent with DS bridging T.DS and free HCII. The results suggest that GAG template action facilitates ternary complex formation and accommodates HCII binding to GAG and thrombin exosite I in the ternary complex.  相似文献   

20.
Structural evidence for leucine at the reactive site of heparin cofactor II   总被引:2,自引:0,他引:2  
The reaction products formed during the enzymatic inactivation of heparin cofactor II (HCII) by a proteinase isolated from Echis carinatus were analyzed by sodium dodecyl sulfate (NaDodSO4)-polyacrylamide gel electrophoresis and by reverse-phase high-performance liquid chromatography. By NaDodSO4-polyacrylamide gel electrophoresis, limited proteolysis of HCII was observed, which resulted in a decrease in the apparent molecular weight of the protein from approximately 68 000 to approximately 53 000. By reverse-phase high-performance liquid chromatography, at least 20 peptides were observed. Primary structure analysis of these peptides indicated that significant proteolysis had occurred in the NH2-terminal region of the protein. HCII inactivation, however, coincided with the appearance of a peptide from the COOH-terminal region of the protein. The peptide differed from the previously identified reactive site peptide [Griffith, M. J., Noyes, C. M., & Church, F. C. (1985) J. Biol. Chem. 260, 2218-2225] by only one residue: a leucyl residue at the NH2-terminal of the peptide. We conclude that leucine, as opposed to the expected arginine, is at the reactive site of HCII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号