首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Breast cancer is the second most frequent cancer affecting women. Among all endocrine therapies for the treatment of breast cancer, inhibition of estrogen biosynthesis is becoming an interesting complementary approach to the use of antiestrogens. The enzyme type 1 17beta-hydroxysteroid dehydrogenase (17beta-HSD) plays a critical role in the biosynthesis of estradiol catalyzing preferentially the reduction of estrone into estradiol, the most active estrogen. Consequently, this enzyme is an interesting biological target for designing drugs for the treatment of estrogen-sensitive diseases such as breast cancer. Our group has reported the synthesis and the biological evaluation of N-methyl, N-butyl 6beta-(thiaheptamamide)estradiol as a potent reversible inhibitor of type 1 17beta-HSD. Unfortunately, this inhibitor has shown an estrogen effect, thus reducing its possible therapeutic interest. Herein three strategies to modify the biological profile (estrogenicity and inhibitory potency) of the initial lead compound were reported. In a first approach, the thioether bond was replaced with a more stable ether bond. Secondly, the hydroxyl group at position 3, which is responsible for a tight binding with the estrogen receptor, was removed. Finally, the amide group of the side-chain was changed to a methyl group. Moreover, the relationship between the inhibitory potency and the configuration of the side-chain at position 6 was investigated. The present study confirmed that the 6beta-configuration of the side chain led to a much better inhibition than the 6alpha-configuration. The replacement of the 3-OH by a hydrogen atom as well as that of the amide group by a methyl was clearly unfavorable for the inhibition of type 1 17beta-HSD. Changing the thioether for an ether bond decreased by 10-fold the estrogenic profile of the lead compound while the inhibitory potency on type 1 17beta-HSD was only decreased by 5-fold. This study contributes to the knowledge required for the development of compounds with the desired profile, that is, a potent inhibitor of type 1 17beta-HSD without estrogen-like effects.  相似文献   

2.
Estrogens play an important role in the development of breast cancer. Inhibiting 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1)--the enzyme responsible for the last step in the biosynthesis of the most potent estrogen, estradiol (E2)--would thus allow hindering the growth of estrogen-sensitive tumors. Based on a previous study identifying 16beta-benzyl-E2 (1) as a lead compound for developing inhibitors of the transformation of estrone (E1) into E2, we modified the benzyl group of 1 to improve its inhibitory activity. Three strategies were also devised to produce compounds with less residual estrogenic activity: (1) replacing the hydroxy group by a hydrogen at position 3 (C3); (2) adding a methoxy at C2; and (3) adding an alkylamide chain known to be antiestrogenic at C7. In order to test the inhibitory potency of the new compounds, we used the human breast cancer cell line T-47D, which exerts a strong endogenous 17beta-HSD1 activity. In this intact cell model, 16beta-m-carbamoylbenzyl-E2 (4m) emerged as a potent inhibitor of 17beta-HSD1 with an IC50 value of 44 nM for the transformation of [14C]-E1 (60 nM) into [14C]-E2 (24-h incubation). In another assay aimed at assessing the unwanted estrogenic activity, a 10-day treatment with 4m at a concentration of 0.5 microM induced some proliferation (38%) of T-47D estrogen-sensitive (ER+) breast cancer cells. Interestingly, when 4m (0.5 microM) was given with E1 (0.1 nM) in a 10-day treatment, it blocked 62% of the T-47D cell proliferation induced by E1 after its reduction to E2 by 17beta-HSD1. Thus, in addition to generating useful structure-activity relationships for the development of 17beta-HSD1 inhibitors, our study demonstrates that using such inhibitors is a valuable strategy for reducing the level of E2 and consequently its proliferative effect in T-47D ER+ breast cancer cells.  相似文献   

3.
We report the synthesis and biochemical evaluation of a number of 4-hydroxyphenyl ketones as potential inhibitors of the enzyme 17beta-hydroxysteroid dehydrogenase (17beta-HSD). In particular, we evaluated compounds against the catalysis of the conversion of androstenedione (AD) to testosterone (T) [17beta-HSD type 3 (17beta-HSD3)], furthermore, in an effort to determine the specificity of our compounds, we evaluated the ability of the compounds to inhibit the catalysis of the conversion of estrone (E1) to estradiol (E2) [17beta-HSD type 1 (17beta-HSD1)] as well as the conversion of dehydroepiandrosterone (DHEA) to AD [by 3beta-hydroxysteroid dehydrogenase (3beta-HSD)]. The results of our study suggest that the synthesised compounds are, in general, able to inhibit 17beta-HSD3 whilst being weak inhibitors of 17beta-HSD1. Against 3beta-HSD, we discovered that all of the synthesised compounds were weak inhibitors (all were found to possess less than 50% inhibition at [I]=500 microM). More specifically, we discovered that 1-(4-hydroxy-phenyl)-nonan-1-one (15) was the most potent against 17beta-HSD3 (IC(50)=2.9 microM) whilst possessing poor inhibitory activity against 17beta-HSD1 ( approximately 36% inhibitory activity against this reaction at [I]=100 microM) and less than 10% inhibition for the conversion of DHEA to AD. We have therefore provided good lead compounds in the design and synthesis of novel non-steroidal inhibitors of 17beta-HSD3.  相似文献   

4.
Tremblay MR  Lin SX  Poirier D 《Steroids》2001,66(11):821-831
The 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) are members of a family of enzymes that catalyze the interconversion of weakly active sexual hormones (ketosteroids) and potent hormones (17beta-hydroxysteroids). Among the known isoforms of 17beta-HSD, the type 1 catalyzes the NAD(P)H-mediated reduction of estrone (E(1)) to estradiol (E(2)), a predominant mitogen for the breast cancer cells. Therefore, the inhibition of this particular enzyme is a logical approach to reduce the concentration of estradiol in breast tumors. To develop inhibitors of type 1 17beta-HSD activity, we hypothesized that molecules containing both hydrophobic and hydrophilic components should be interesting candidates for interacting with both the steroid binding domain and some amino acid residues of the cofactor binding domain of the enzyme. Firstly, a conveniently protected 16beta-(3-aminopropyl)-E(2) derivative was synthesized from commercially available E(1). Then, a representative of all class of NHBoc-protected amino acids (basic, acid, aromatic, aliphatic, hydroxylated) were coupled using standard procedures to the amino group of the precursor. Finally, cleavage of all protecting groups was performed in a single step to generate a series of 16beta-propylaminoacyl derivatives of E(2). The enzymatic screening revealed that none of the novel compounds can inhibit the reductive activity of type 1 17beta-HSD. On the other hand, all of these E(2) derivatives did not show any significant binding affinity on four steroid receptors including the estrogen receptor. Additional efforts aimed at improving the inhibitory potency of these steroidal derivatives on type 1 17beta-HSD without providing estrogenic activities is under investigation using a combinatorial chemistry approach.  相似文献   

5.
Human estrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD1), a member of the short chain dehydrogenase/reductase (SDR) family, is responsible for the biosynthesis of all active estrogens. The crystal structures of two C19-steroid ternary complexes (17beta-HSD1-androstanedione-NADP and 17beta-HSD1-androstenedione-NADP) reveal the critical role of Leu149 in regulating the substrate specificity and provide novel insight into the different fates of a conserved glutamate residue in the estrogen-specific proteins upon the binding of the keto and hydroxyl groups of steroids. The whole NADP molecule can be unambiguously defined in the NADP binary complex, whereas both ternary complexes show that the nicotinamide moiety of NADP cannot be located in the density maps. In both ternary complexes, the expected position of carboxamide oxygen of NADP is occupied by a water molecule, which makes a bifurcated hydrogen bond with the O3 of C19-steroid and the main chain nitrogen of Val188. These results demonstrate that the hydrogen bonding interaction between the main chain amide group and the carboxamide group of NAD(P)(H) plays an important role in anchoring the nicotinamide ring to the enzyme. This finding is substantiated by structural analyses of all 33 NAD(P)(H) complexes of different SDR proteins, because 29 structures of 33 show this interaction. This common feature reveals a general mechanism among the SDR family, providing a rational basis for inhibitor design against biologically relevant SDR targets.  相似文献   

6.
A series of steroidal compounds were synthesized in order to evaluate the possible influence of the configuration of a stereocenter in the 17beta-side chain on the inhibitory activity on the enzyme 5alpha-reductase (5AR). For this purpose diastereomerically pure 4-azasteroids epimers at C-22 were prepared (compounds 1-11) and tested as inhibitors of 5AR in "in vitro" tests. The obtained data showed that in most cases the couples of epimers possess a significant difference in their biological activity. We also considered, for the tested molecules, a series of chemico-physical parameters in order to find a possible correlation with their biological activity. The findings allowed us to propose a model of the binding site of 5AR which comprises also, for 4-azasteroid inhibitors, the configurational aspect of the 17beta-side chain.  相似文献   

7.
8.
Breast cancer is the second most frequent cancer affecting women. Among all endocrine therapies for the treatment of breast cancer, inhibition of estrogen biosynthesis is becoming an interesting complementary approach to the use of antiestrogens. The enzyme type 1 17β-hydroxysteroid dehydrogenase (17β-HSD) plays a critical role in the biosynthesis of estradiol catalyzing preferentially the reduction of estrone into estradiol, the most active estrogen. Consequently, this enzyme is an interesting biological target for designing drugs for the treatment of estrogen-sensitive diseases such as breast cancer. Our group has reported the synthesis and the biological evaluation of N-methyl, N-butyl 6β-(thiaheptamamide)estradiol as a potent reversible inhibitor of type 1 17β-HSD. Unfortunately, this inhibitor has shown an estrogen effect, thus reducing its possible therapeutic interest. Herein three strategies to modify the biological profile (estrogenicity and inhibitory potency) of the initial lead compound were reported. In a first approach, the thioether bond was replaced with a more stable ether bond. Secondly, the hydroxyl group at position 3, which is responsible for a tight binding with the estrogen receptor, was removed. Finally, the amide group of the side-chain was changed to a methyl group. Moreover, the relationship between the inhibitory potency and the configuration of the side-chain at position 6 was investigated. The present study confirmed that the 6β-configuration of the side chain led to a much better inhibition than the 6α-configuration. The replacement of the 3-OH by a hydrogen atom as well as that of the amide group by a methyl was clearly unfavorable for the inhibition of type 1 17β-HSD. Changing the thioether for an ether bond decreased by 10-fold the estrogenic profile of the lead compound while the inhibitory potency on type 1 17β-HSD was only decreased by 5-fold. This study contributes to the knowledge required for the development of compounds with the desired profile, that is, a potent inhibitor of type 1 l7β-HSD without estrogen-like effects.  相似文献   

9.
The cytochrome P450 enzyme, 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), is a potential target in hormone-dependent cancers. We report the synthesis, biochemical evaluation and rationalisation of the inhibitory activity of a number of azole-based compounds as inhibitors of the two components of P450(17alpha), i.e., 17alpha-hydroxylase (17alpha-OHase) and 17,20-lyase (lyase). The results suggest that the imidazole-based compounds are highly potent inhibitors of both components, with N-7-phenyl heptyl imidazole (21) (IC(50)=0.32 microM against 17alpha-OHase and IC(50)=0.10 microM against lyase) and N-8-phenyl octyl imidazole (23) (IC(50)=0.25 microM against 17alpha-OHase and IC(50)=0.21 microM against lyase) being the two most potent compounds within the current study, in comparison to ketoconazole (KTZ) (IC(50)=3.76 microM against 17alpha-OHase and IC(50)=1.66 microM against lyase). Furthermore, consideration of the inhibitory activity against the two components show that the compounds tested are less potent towards the 17alpha-OHase component, a desirable property in the development of novel inhibitors of P450(17alpha). Structure-activity relationship determination of the range of compounds synthesised suggests that logP (log of the partition coefficient) is a key physicochemical factor in determining the overall inhibitory activity. In an effort to determine the viability of these compounds becoming potential drug candidates as well as to show specificity of these compounds, we undertook the biochemical evaluation of the synthesised compounds against two isozymes of 17beta-hydroxysteroid dehydrogenase [namely type 1 (17beta-HSD1) and type 3 (17beta-HSD3)] and 3beta-hydroxysteroid dehydrogenase (3beta-HSD). Consideration of the inhibitory activity possessed by the compounds considered within the current study against 3beta-HSD, 17beta-HSD1 and 17beta-HSD3 shows that there is no clear structure-activity relationship and that the compounds appear to possess similar inhibitory activity against both 3beta-HSD and 17beta-HSD3 whilst against 17beta-HSD1, the compounds appear to possess poor inhibitory activity at [I]=100 microM. Indeed, two of the most potent inhibitors of P450(17alpha), (compounds 21 and 23), were found to possess relatively good levels of inhibition against the three enzymes-compound 21 was found to possess approximately 32%, approximately 21% and approximately 37% inhibition whilst compound 23 was found to possess approximately 38%, approximately 30% and approximately 28% inhibition against 3beta-HSD, 17beta-HSD1 and 17beta-HSD3 respectively. We therefore concluded that the azole-based compounds synthesised within the current study are not suitable for further consideration as potential drug candidates due to their lack of specificity.  相似文献   

10.
Type 3 17beta-hydroxysteroid dehydrogenase (17beta-HSD) catalyzes the last step in the biosynthesis of the potent androgen testosterone (T) by selectively reducing the C17 ketone of 4-androstene-3,17-dione (delta4-dione), with NADPH as cofactor. This enzyme is thus an interesting therapeutic target for androgen-sensitive diseases. Using an efficient convergent chemical approach we synthesized a phosphorylated version of the best delta4-dione/adenosine hybrid inhibitor of type 3 17beta-HSD previously reported. An appropriately protected C2' phosphorylated adenosine was first prepared and linked by esterification to the steroid delta4-dione bearing an alkyl spacer. After three deprotection steps, the phosphorylated bisubstrate inhibitor was obtained. The inhibitory potency of this compound was evaluated on homogenated HEK-293 cells overexpressing type 3 17beta-HSD and compared to the best non-phosphorylated bisubstrate inhibitor. Unexpectedly, the phosphorylated derivative was slightly less potent than the non-phosphorylated bisubstrate inhibitor of type 3 17beta-HSD. Two hypotheses are discussed to explain this result: 1) the phosphorylated adenosine moiety does not interact optimally with the cofactor-binding site and 2) the bisubstrate inhibitors, phosphorylated or not, interact only with the substrate-binding site of type 3 17beta-HSD.  相似文献   

11.
The family of 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyzes the formation and inactivation of testosterone (T), dihydrotestosterone (DHT), and estradiol (E2), thus playing a crucial role in the regulation of active steroid hormones in target tissues. Among the five known 17beta-HSD enzymes, type II catalyzes the oxidation of E2 into estrone (E1), T into androstenedione, DHT into androstanedione, and 20alpha-dihydroprogesterone into progesterone. Specific inhibitors are thus an interesting means to study the regulation and to probe the structure of type II 17beta-HSD. In this context, we have efficiently synthesized a series of 7alpha-thioalkyl and 7alpha-thioaryl derivatives of spironolactone that inhibit type II 17beta-HSD. These new C19-steroidal inhibitors possess two important pharmacophores, namely 17-spiro-gamma-lactone and a bulky side-chain at the 7alpha-position. It was found that a para-substituted benzylthio group at the 7alpha-position enhances the inhibitory potency of spironolactone derivatives on type II 17beta-HSD. In fact, the compound with a para-hydroxy-benzylthio group showed an IC50 value of 0.5 microM against type II 17beta-HSD, whereas the compound with a para-[2-(1-piperidinyl)-ethoxy]-benzylthio group inhibited this enzyme with an IC50 value of 0.7 microM. The latter inhibitor is more selective than the former because it did not show any inhibitory potency against P450 aromatase as well as any affinity towards four steroid receptors (AR, PR, GR, ER). As a result, this inhibitor did not show any proliferative effect on androgen-sensitive Shionogi cells and estrogen-sensitive ZR-75-1 cells. These findings contribute to a better knowledge of the structure of type II 17beta-HSD and offer an interesting tool to study the regulation of this enzyme in several biological systems.  相似文献   

12.
Bydal P  Auger S  Poirier D 《Steroids》2004,69(5):325-342
The peripheral conversion of steroid precursors into biologically active forms can be a major source of steroid synthesis, and these steroids support the growth of hormone-dependent diseases. The 17beta-hydroxysteroid dehydrogenase (17beta-HSD) enzyme family is involved in the biosynthesis of active steroids and its inhibition constitutes an interesting approach for treating estrogen- and androgen-dependent cancers. We previously found that a compound formed by the introduction of a spiro-gamma-lactone at position 17 of estradiol (E2) produces a significant inhibition of type 2 17beta-HSD. To optimize the inhibitory potency of such compounds, we synthesized a series of estradiol derivatives bearing a lactone on the D-ring and tested their ability to inhibit the type 2 17beta-HSD transformation of 4-androstenedione into testosterone. The results of our structure-activity relationship study determined the importance of the 17beta-orientation of the oxygen atom. Indeed, the 17beta-O-isomer of spiro-gamma-lactone-E2 is a much more potent inhibitor than the 17alpha-O-analog (respectively 85 and 9% of inhibition at 1 microM). The carbonyl function is essential since the percentage of inhibition shifts from 85 to 30%, 15, or 3%, when the carbonyl group is transformed into a hydroxyl, a methoxy or a methylene (cycloether) group, respectively. Our results lead us to realize the importance of the spirolactone versus the C17beta-O/C16beta lactone (respectively 32 and 2% of inhibition at 0.1 microM, for the same size of lactone ring). The optimal size for the spirolactone was also established to be six members. All the types of substituents (methyl, dimethyl, allyl, propyl, and methoxycarbonyl) that we added on the spiro-delta-lactone moiety decreased the inhibitory activity, suggesting steric restrictions for the space that can be occupied in proximity of the spiro-delta-lactone functionality. 17-(Spiro-delta-lactone)-E2, compound 6, was thus the most potent inhibitor of type 2 17beta-HSD with a K(i) value of 29 +/- 5 nM. This compound reversibly inhibits type 2 17beta-HSD in a non-competitive manner.  相似文献   

13.
Boivin RP  Labrie F  Poirier D 《Steroids》1999,64(12):825-833
To develop inhibitors of steroid sulfatase without residual estrogenic activity, we have designed a series of estradiol (E2) derivatives bearing an alkan (or alkyn) amide side chain at position 17alpha. A hydrophobic alkyl group was selected from our previous study where 17alpha-octyl-E2 was found to inhibit strongly the steroid-sulfatase activity. Furthermore, it is known that an alkylamide side chain blocks the estrogen-receptor activation. Starting from ethynylestradiol, the chemical synthesis of target compounds was short and efficient with overall yields of 22-42% (3 or 4 steps). Among these compounds, N-octyl,N-methyl-3-(3',17'beta-dihydroxy-1',3',5'(10')-estratrien- 17'alpha-yl)-propanamide (15) was the most potent inhibitor, with an IC50 value of 0.08 microM for the transformation of estrone sulfate (E1S) to estrone (E1) by homogenated JEG-3 cells. N-butyl, N-hexyl, and N,N-dioctyl propanamide derivatives of E2 (IC50 values of 6.4, 2.8, and >20 microM, respectively) were less potent inhibitors than N-octyl analog 15. Furthermore, the unsaturated propynamide analog of 15 gave lower inhibition (four times) than the saturated compound. Compound 15 is also about 100-fold more effective in interacting with the enzyme than substrate E1S itself. The ability of target compounds to bind the estrogen receptor, to stimulate the proliferation of estrogen-sensitive ZR-75-1 cells, or to inhibit the E2-stimulation of ZR-75-1 cells was also evaluated. Although a mixed estrogenic/anti-estrogenic activity was obtained for tested compounds at 1 microM, no estrogenic activity was observed at 0.03 microM for 15. In conclusion, a promising inhibitor of steroid-sulfatase activity was obtained by introducing a hydrophobic octyl group in a 17alpha-propanamide side chain of E2, but further structure-activity relationships (SAR) studies are necessary to minimize the residual estrogenic activity.  相似文献   

14.
C H Blomquist  C E Kotts 《Steroids》1978,32(3):399-419
When microsomes were prepared in 2-mercaptoethanol Vmax for 17beta-hydroxysteroid oxidoreductase (17beta-HSD) was greater, the Km for NAD+ was greater and the Km for testosterone lower than in its absence. During storage at 4 degrees Vmax increased in the presence of 2-mercaptoethanol and decreased in its absence; Km values for testosterone and NAD+ increased during storage in both cases. The presence or absence of 2-mercaptoethanol did not affect the extent or time-course of inactivation of 17beta-HSD by trypsin or phospholipase A. Furthermore, no differences were detected in sedimentation properties on sucrose density gradients suggesting that the differences and changes in the kinetic behavior of 17beta-HSD reflect a conformational flexibility at the active site and are not due to extensive changes in the structure of the microsomes. 17beta-HSD exposed to 2-mercaptoethanol was subject to substrate inhibition by testosterone, a type of inhibition not previously reported for this enzyme.  相似文献   

15.
The human type 1 (placenta, breast tumors) and type 2 (gonads, adrenals) isoforms of 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD) are key enzymes in steroidogenic pathways leading to the production of all active steroid hormones. Kinetic analyses of purified 3beta-HSD1 show that the Michaelis-Menten constants (Km) for substrates and cofactor are decreased dramatically (three- to eight-fold) by the addition of beta-mercaptoethanol (BME), which suggest that a disulfide bond may be critical to ligand utilization. Western immunoblots and SDS-PAGE of purified 3beta-HSD1 in the presence or absence of BME showed a lack of intersubunit disulfide bonds in the dimeric enzyme. The Rossmann-fold domain of 3beta-HSD1 contains two Cys residues, Cys72 and Cys111, which are capable of forming an intrasubunit disulfide bond based on their proximity in our structural model. Our structural model also predicts that Cys83 may affect the orientation of substrate and cofactor. To test these predictions, the C72S, C72F, C111S, C111A, C83S and C83A mutants of 3beta-HSD1 were produced, expressed, and purified. BME failed to diminish the Km values of substrate and cofactor for C72S, C72F, C111S and C111A but produced a 2.5 decrease in Km values for C83A ligands similar to wild-type 3beta-HSD. Thus, our results support the presence of an intrasubunit disulfide bond between Cys72 and Cys111 that participates in the tertiary structure of the Rossmann-fold domain. Although C83S had no enzyme activity, the C83A mutant enzyme exhibited two- to five-fold higher Km values for substrate and cofactor but had similar K(cat) values compared to wild-type 3beta-HSD. These data characterize the roles of Cys residues in 3beta-HSD and validate the predictions of our structural model.  相似文献   

16.
The human type 1 (placenta, breast tumors) and type 2 (gonads, adrenals) isoforms of 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD) are key enzymes in biosynthesis of all active steroid hormones. Human 3beta-HSD1 is a critical enzyme in the conversion of DHEA to estradiol in breast tumors and may be a major target enzyme for the treatment of breast cancer. 3beta-HSD2 participates in the production of cortisol and aldosterone in the human adrenal gland. The goals of this project are to evaluate the role of the 2alpha-cyano group on trilostane (2alpha-cyano-4alpha,5alpha-epoxy-17beta-ol-androstane-3-one) and determine which amino acids may be critical for 3beta-HSD1 specificity. Trilostane without the 2alpha-cyano group, 4alpha,5alpha-epoxy-testosterone, was synthesized. Using our structural model of 3beta-HSD1, trilostane or 4alpha,5alpha-epoxy-testosterone was docked in the active site using Autodock 3.0, and the potentially critical residues (Met187 and Ser124) were identified. The M187T and S124T mutants of 3beta-HSD1 were created, expressed and purified. Dixon analyses of the inhibition of wild-type 3beta-HSD1, 3beta-HSD2, M187T and S124T by trilostane and 4alpha,5alpha-epoxy-testosterone suggest that the 2alpha-cyano group of trilostane is anchored by Ser124 in both isoenzymes. Kinetic analyses of cofactor and substrate utilization as well as the inhibition kinetics of M187T and the wild-type enzymes suggest that the 16-fold higher-affinity inhibition of 3beta-HSD1 by trilostane may be related to the presence of Met187 in 3beta-HSD1 and Thr187 in 3beta-HSD2. This structure/function information may lead to the production of more highly specific inhibitors of 3beta-HSD1 to block the hormone-dependent growth of breast tumors.  相似文献   

17.
In a screening programme for inhibitors of human testis 17beta-hydroxysteroid dehydrogenase (17beta-HSD type 3), as potential agents for the treatment of hormone-dependent prostatic cancer, we have used crude human testis microsomal 17beta-hydroxysteroid dehydrogenase as a convenient source of the enzyme. Crude human enzyme was shown to have a similar substrate profile to recombinant Type 3 17beta-HSD from the same source as determined by the low Km/Vmax ratio for the reduction of androstenedione compared to the oxidation of testosterone, and a low level of activity in reduction of oestrone. Screening of a wide range of compounds of different structural types as potential inhibitors of the microsomal enzyme in the reduction step revealed that certain p-benzoquinones and flavones/isoflavones were potent inhibitors of the enzyme, diphenyl-p-benzoquinone (2.7 microM), phenyl-p-benzoquinone (5.7 microM), 7-hydroxyflavone (9.0 microM), baicalein (9.3 microM) and biochanin A (10.8 microM). Some structure-activity relationships within the flavone/isoflavone series are discussed. Studies with rat testis microsomal 17beta-HSD showed that it differed from the human enzyme mainly in its greater ability to accept oestrone as substrate and the pH-optimum for oxidation of testosterone. It was found to be much less sensitive to inhibition by the compounds studied so negating it use as a more readily available tissue for the screening of potential inhibitors.  相似文献   

18.
We report the preliminary results of the synthesis and biochemical evaluation of a number of 4-hydroxyphenyl ketones as inhibitors of the isozyme of the enzyme 17beta-hydroxysteroid dehydrogenase (17beta-HSD) responsible for the conversion of androstenedione (AD) to testosterone (T), more specifically type 3 (17beta-HSD3). The results of our study suggest that we have synthesised compounds which are, in general, potent inhibitors of 17beta-HSD3, in particular, we discovered that 1-(4-hydroxy-phenyl)-nonan-1-one (8) was the most potent (IC(50) = 2.86 +/- 0.03 microM). We have therefore provided good lead compounds in the synthesis of novel non-steroidal inhibitors of 17beta-HSD3.  相似文献   

19.
The 7-hydroxycoumarins, umbelliferone and 4-methylumbelliferone (IC50 = 1.4 and 1.9 microM, respectively) were potent inhibitors of human testes microsomal 17beta-HSD (type 3) enzyme whereas 7-methoxycoumarin, 4-hydroxycoumarin and 7-ethoxycoumarin had little or no inhibitory activity. Analogues of the weak inhibitory triphenylethenes tamoxifen and clomiphene but lacking the basic substituent, were weak inhibitors of the human microsomal enzyme. Inhibitory activity was improved by replacement of the triphenylethene structure with a triphenylmethyl (17, 52.6% inhibition) or phenylpropyl (16, 94.8%, IC50 = 42.1 microM) skeleton. Further studies on tamoxifen using rat testes microsomal 17beta-HSD showed that the inhibition was time-dependent and irreversible but not specifically mechanism-based.  相似文献   

20.
It is known that there is a local biosynthesis of estradiol (E2) in breast carcinoma. The steroidogenic enzymes involved in E2 formation are aromatase which transforms testosterone into E2 and androstenedione into estrone (E1) and reductive 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) which convert E1 into E2. Using immunocytochemistry, we have studied the expression of aromatase and the three reductive 17beta-HSDs 17beta-HSD types 1, 7 and 12 in 41 specimens of female human breast carcinoma and adjacent non-malignant tissues. These results were correlated with the estrogen receptor alpha (ERalpha) and beta (ERbeta), progesterone receptor, androgen receptor, CDC47 and c-erb B-2 expressions and with the tumor stages. Aromatase was found in 58%, 17beta-HSD type 7 in 47% and 17beta-HSD type 12 in 83% of the breast cancer specimens. The 17beta-HSD type 1 could be detected in only one tumor. A significant correlation was observed between the aromatase, 17beta-HSD type 7 and 17beta-HSD type 12 expression, as well as between each of the two enzymes 17beta-types 7 and 12 and the ERbeta expression. The expression of 17beta-HSD type 12 was significantly higher in breast carcinoma specimens than in normal tissue. There was also a significant association of CDC 47 expression with ERbeta, AR and 17beta-HSD type 12. The results indicate that aromatase, 17beta-HSD type 7 and 17beta-HSD type 12, but not 17beta-HSD type 1, are commonly expressed in human breast cancer. Moreover, the high expression of both 17beta-HSD type 12 and ERbeta in breast carcinoma cells may play a role in the development and/or progression of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号