首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We utilized recombinant fibronectin polypeptides with cell-binding domain and heparin-binding domains (referred to as C-274 and H-271, respectively) and their fusion polypeptide (CH-271) to examine the role of sulfated polysaccharide heparin and/or the functional domains of fibronectin in modulating tumor cell behavior. Both C-274 and CH-271 polypeptides with cell-binding domains promoted the adhesion and migration of B16-BL6 melanoma cells, whereas H-271 did not. Heparin bound to the immobilized polypeptides with heparin-binding domain (H-271, CH-271, and a mixture of C-274 and H-271 or fibronectin) but did not affect the tumor cell adhesion to the substrates. At the same time, heparin or two monoclonal antibodies against the heparin-binding domain were able to inhibit the haptotactic migration to CH-271 or fibronectin, though not to C-274 or a mixture of C-274 and H-271. This suggests that although heparin did not affect tumor cell adhesion to the cell-binding domain near the heparin-binding domain in CH-271 or fibronectin, it did lead to a modulation of cell motility. It seems likely that the regulatory mechanism may depend on interaction between heparin-like molecules on the cell surface and the heparin-binding domain in fibronectin, rather than on simple steric hindrance or on the masking of the cell-binding domain caused by the binding of heparin to heparin-binding domain.  相似文献   

2.
The present study provides direct evidence that syndecan 2 participates selectively in the induction of stress fiber formation in cooperation with integrin alpha5beta1 through specific binding of its heparan sulfate side chains to the fibronectin substrate. Our previous study with Lewis lung carcinoma-derived P29 cells demonstrated that the cell surface heparan sulfate proteoglycan, which binds to fibronectin, is syndecan 2 (N. Itano et al., 1996, Biochem. J. 315, 925-930). We here report that in vitro treatment of the cells by antisense oligonucleotide for syndecan 2 resulted in a failure to form stress fibers on fibronectin substrate in association with specific suppression of its cell surface expression. Instead, localization of actin filaments in the cytoplasmic cortex occurred. A similar response of the cells was observed when the cells were treated to eliminate functions of cell surface heparan sulfates, including exogenous addition of heparin and pretreatment with anti-heparan sulfate antibody, F58-10E4, and with proteinase-free heparitinase I. Size- and structure-defined oligosaccharides prepared from heparin and chemically modified heparins were utilized as competitive inhibitors to examine the structural characteristics of the cell surface heparan sulfates involved in organization of the actin cytoskeleton. Their affinity chromatography on a column linked with a recombinant H-271 peptide containing a C-terminal heparin-binding domain of fibronectin demonstrated that 2-O-sulfated iduronates were essential for the binding. Inhibition studies revealed that a heparin-derived dodecasaccharide sample enriched with an IdoA(2OS)-GlcNS(6OS) disaccharide completely blocked binding of the syndecan 2 ectodomain to immobilized H-271 peptide. Finally, the dodecasaccharide sample was shown to inhibit stress fiber formation, triggered by adhesion of P29 cells to a CH-271 polypeptide consisting of both the RGD cell-binding and the C-terminal heparin-binding domains of fibronectin in a fused form. All these results consistently suggest that syndecan 2 proteoglycan interacts with the C-terminal heparin-binding domain of fibronectin at the highly sulfated cluster(s), such as [IdoA(2OS)-GlcNS(6OS)](6) present in its heparan sulfate chains, to result in the induction of stress fiber formation in cooperation with integrin alpha5beta1.  相似文献   

3.
The present study provides direct evidence that syndecan 2 participates selectively in the induction of stress fiber formation in cooperation with integrin α5β1 through specific binding of its heparan sulfate side chains to the fibronectin substrate. Our previous study with Lewis lung carcinoma-derived P29 cells demonstrated that the cell surface heparan sulfate proteoglycan, which binds to fibronectin, is syndecan 2 (N. Itano et al., 1996, Biochem. J. 315, 925–930). We here report that in vitro treatment of the cells by antisense oligonucleotide for syndecan 2 resulted in a failure to form stress fibers on fibronectin substrate in association with specific suppression of its cell surface expression. Instead, localization of actin filaments in the cytoplasmic cortex occurred. A similar response of the cells was observed when the cells were treated to eliminate functions of cell surface heparan sulfates, including exogenous addition of heparin and pretreatment with anti-heparan sulfate antibody, F58-10E4, and with proteinase-free heparitinase I. Size- and structure-defined oligosaccharides prepared from heparin and chemically modified heparins were utilized as competitive inhibitors to examine the structural characteristics of the cell surface heparan sulfates involved in organization of the actin cytoskeleton. Their affinity chromatography on a column linked with a recombinant H-271 peptide containing a C-terminal heparin-binding domain of fibronectin demonstrated that 2-O-sulfated iduronates were essential for the binding. Inhibition studies revealed that a heparin-derived dodecasaccharide sample enriched with an IdoA(2OS)–GlcNS(6OS) disaccharide completely blocked binding of the syndecan 2 ectodomain to immobilized H-271 peptide. Finally, the dodecasaccharide sample was shown to inhibit stress fiber formation, triggered by adhesion of P29 cells to a CH-271 polypeptide consisting of both the RGD cell-binding and the C-terminal heparin-binding domains of fibronectin in a fused form. All these results consistently suggest that syndecan 2 proteoglycan interacts with the C-terminal heparin-binding domain of fibronectin at the highly sulfated cluster(s), such as [IdoA(2OS)–GlcNS(6OS)]6 present in its heparan sulfate chains, to result in the induction of stress fiber formation in cooperation with integrin α5β1.  相似文献   

4.
The principal region of the human plasma fibronectin molecule mediating the adhesion of melanoma cells appears to be the alternatively spliced type III connecting segment (IIICS (Humphries, M. J., Akiyama, S. K., Komoriya, A., Olden, K., and Yamada, K. M. (1986a) J. Cell Biol., in press]. A series of overlapping synthetic peptides spanning the entire IIICS (CS peptides) were examined for their effects on B16-F10 melanoma cell adhesion to the parent fibronectin molecule. Two nonadjacent CS peptides, designated CS1 and CS5, were inhibitory. In contrast, neither inhibited fibronectin-mediated spreading of fibroblastic baby hamster kidney cells. When N-terminal cysteine derivatives of the CS peptides were conjugated to IgG by covalent cross-linking with N-succinimidyl-3(2-pyridyldithio)propionate, both the CS1 and CS5 conjugates promoted B16-F10 melanoma cell spreading. All conjugates were inactive for spreading of baby hamster kidney cells, confirming the cell type specificity of the IIICS adhesion site. Determination of the amounts of CS peptide required to support melanoma cell adhesion revealed that the activity of CS1 was only 2.4-fold lower than that of the intact fibronectin molecule. CS5 was approximately 320-fold less active than fibronectin, suggesting that the CS1 region may be the major site of interaction with the melanoma cell surface. The adhesion-promoting activities of CS1-IgG and CS5-IgG were additive as were the inhibitory activities of the free peptides for B16-F10 cell spreading on fibronectin. These findings suggest that both regions of the IIICS can function separately or together in mediating the interaction of melanoma cells with fibronectin. Since CS1 and CS5 are each found in separate alternatively spliced regions of the IIICS, it is conceivable that the adhesion-promoting activity of fibronectin for different cell types may be under complex regulation.  相似文献   

5.
To investigate the mechanism of trophoblast adhesion to fibronectin, we cultured blastocysts in serum-free medium on proteolytic fibronectin fragments containing its major functional domains, and localized fibronectin-binding integrins in outgrowing trophoblast cells by immunofluorescent staining. Outgrowth comparable to that obtained with intact fibronectin was observed using a 120 kD chymotryptic fragment containing the central cell-binding domain (FN-120) and the Arg-Gly-Asp (RGD) recognition sequence. A 40 kD COOH-terminal chymotryptic fragment of fibronectin containing both a heparin-binding region and an alternate (non-RGD) cell-binding site was inactive in supporting trophoblast adhesion. Three synthetic peptides derived from the heparin-binding domain, including the CS1 alternate cell-binding site, were also unable to promote trophoblast cell adhesion. A 75 kD recombinant protein, ProNectin F, containing 13 copies of the cell recognition epitope of fibronectin, Val-Thr-Gly-Arg-Gly-Asp-Ser-Pro-Ala-Ser, vigorously supported blastocyst outgrowth. Blastocyst outgrowth was not significantly different when surfaces were precoated with cellular fibronectin, which contains an alternatively spliced type III repeat and is the form actually encountered in vivo. Several putative fibronectin receptors were localized in trophoblast outgrowths by immunofluorescent labeling. Antibodies reactive with integrin subunits α3, α5, αllb, αv, β1 and β3, but not α4, all bound to trophoblast cells. Antibodies raised against either the β1 or β3 integrin subunits significantly inhibited fibronectin-mediated outgrowth. These findings demonstrate the key role of the central cell-binding domain of fibronectin in trophoblast adhesion, and suggest four RGD-binding integrins, α3β1, α5β1, αllbβ3, and αvβ3, that could mediate trophoblast adhesion in vitro and may play an important role during implantation. © 1995 Wiley-Liss, Inc.  相似文献   

6.
We have examined the molecular interactions of avian neural crest cells with fibronectin and laminin in vitro during their initial migration from the neural tube. A 105-kDa proteolytic fragment of fibronectin encompassing the defined cell-binding domain (65 kDa) promoted migration of neural crest cells to the same extent as the intact molecule. Neural crest cell migration on both intact fibronectin and the 105-kDa fragment was reversibly inhibited by RGD-containing peptides. The 11.5-kDa fragment containing the RGDS cell attachment site was also able to support migration, whereas a 50-kDa fragment corresponding to the adjacent N-terminal portion of the defined cell-binding domain was unfavorable for neural crest cell movement. In addition to the putative "cell-binding domain," neural crest cells were able to migrate on a 31-kDa fragment corresponding to the C-terminal heparin-binding (II) region of fibronectin, and were inhibited in their migration by exogenous heparin, but not by RGDS peptides. Heparin potentiated the inhibitory effect of RGDS peptides on intact fibronectin, but not on the 105-kDa fragment. On substrates of purified laminin, the extent of avian neural crest cell migration was maximal at relatively low substrate concentrations and was reduced at higher concentrations. The efficiency of laminin as a migratory substrate was enhanced when the glycoprotein occurred complexed with nidogen. Moreover, coupling of the laminin-nidogen complex to collagen type IV or the low density heparan sulfate proteoglycan further increased cell dispersion, whereas isolated nidogen or the proteoglycan alone were unable to stimulate migration and collagen type IV was a significantly less efficient migratory substrate than laminin-nidogen. Neural crest cell migration on laminin-nidogen was not affected by RGDS nor by YIGSR-containing peptides, but was reduced by 35% after addition of heparin. The predominant motility-promoting activity of laminin was localized to the E8 domain, possessing heparin-binding activity distinct from that of the N-terminal E3 domain. Migration on the E8 fragment was reduced by greater than 70% after addition of heparin. The E1' fragment supported a minimal degree of migration that was RGD-sensitive and heparin-insensitive, whereas the primary heparin-binding E3 fragment and the cell-adhesive P1 fragment were entirely nonpermissive for cell movement.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
《The Journal of cell biology》1986,103(6):2637-2647
We have compared the molecular specificities of the adhesive interactions of melanoma and fibroblastic cells with fibronectin. Several striking differences were found in the sensitivity of the two cell types to inhibition by a series of synthetic peptides modeled on the Arg-Gly-Asp-Ser (RGDS) tetrapeptide adhesion signal. Further evidence for differences between the melanoma and fibroblastic cell adhesion systems was obtained by examining adhesion to proteolytic fragments of fibronectin. Fibroblastic BHK cells spread readily on fl3, a 75-kD fragment representing the RGDS-containing, "cell-binding" domain of fibronectin, but B16-F10 melanoma cells could not. The melanoma cells were able to spread instead on f9, a 113-kD fragment derived from the large subunit of fibronectin that contains at least part of the type III connecting segment difference region (or "V" region); f7, a fragment from the small fibronectin subunit that lacks this alternatively spliced polypeptide was inactive. Monoclonal antibody and fl3 inhibition experiments confirmed the inability of the melanoma cells to use the RGDS sequence; neither molecule affected melanoma cell spreading, but both completely abrogated fibroblast adhesion. By systematic analysis of a series of six overlapping synthetic peptides spanning the entire type III connecting segment, a novel attachment site was identified in a peptide near the COOH- terminus of this region. The tetrapeptide sequence Arg-Glu-Asp-Val (REDV), which is somewhat related to RGDS, was present in this peptide in a highly hydrophilic region of the type III connecting segment. REDV appeared to be functionally important, since this synthetic tetrapeptide was inhibitory for melanoma cell adhesion to fibronectin but was inactive for fibroblastic cell adhesion. REDV therefore represents a novel adhesive recognition signal in fibronectin that possesses cell type specificity. These results suggest that, for some cell types, regulation of the adhesion-promoting activity of fibronectin may occur by alternative mRNA splicing.  相似文献   

8.
The proliferation promoting activity of various proteolytic fragments of human plasma fibronectin was assayed. Study of this activity in fragments, purified by affinity chromatography, has shown that only heparin-binding fragments were capable of promoting fibroblast proliferation while gelatin- and fibrin-binding fragments were not. Heparin-binding fragments with high affinity for heparin were characterized by high activity levels while those with low heparin affinity were inactive. Heparin-binding fragments with the highest proliferation promoting activity contained the cell-binding domain and were virtually devoid of the hep2, hep1 and gelatin-binding domains.  相似文献   

9.
10.
Previous studies have reported that the cell-binding region of the neural cell adhesion molecule (N-CAM) resides in a 65,000-D amino-terminal fragment designated Frl (Cunningham, B. A., S. Hoffman, U. Rutishauser, J. J. Hemperly, and G. M. Edelman, 1983, Proc. Natl. Acad. Sci. USA, 80:3116-3120). We have reported the presence of two functional domains in N-CAM, each identified by a specific mAb, that are required for cell-cell or cell-substratum adhesion (Cole, G. J., and L. Glaser, 1986, J. Cell Biol., 102:403-412). One of these domains is a heparin (heparan sulfate)-binding domain. In the present study we have determined the topographic localization of the heparin-binding fragment from N-CAM, which has been identified by our laboratory. The B1A3 mAb recognizes a 25,000-D heparin-binding fragment derived from chicken N-CAM, and also binds to a 65,000-D fragment, presumably Frl, produced by digestion of N-CAM with Staphylococcus aureus V8 protease. Amino-terminal sequence analysis of the isolated 25,000-D heparin-binding domain of N-CAM yielded the sequence: Leu-Gln-Val-Asp-Ile-Val-Pro-Ser-Gln-Gly. This sequence is identical to the previously reported amino-terminal sequence for murine and bovine N-CAM. Thus, the 25,000-D polypeptide fragment is the amino-terminal region of the N-CAM molecule. We have also shown that the B1A3 mAb recognizes not only chicken N-CAM but also rat and mouse N-CAM, indicating that the heparin-binding domain of N-CAM is evolutionarily conserved among different N-CAM forms. Additional peptide-mapping studies indicate that the second cell-binding site of N-CAM is located in a polypeptide region at least 65,000 D from the amino-terminal region. We conclude that the adhesion domains on N-CAM identified by these antibodies are physically distinct, and that the previously identified cell-binding domain on Frl is the heparin-binding domain.  相似文献   

11.
Specific sequences of cell-adhesive peptide/proteins are often required for the bio-inert synthetic polymers to improve cell adhesion. We have developed a recombinant fibronectin fragment (FNIII10), the central cell-binding domain containing RGD motif, to endow biomaterial surfaces with abilities to promote an integrin-mediated cell adhesion. Immobilized FNIII10 stimulated adhesion of MC3TC-E1 cells in an integrin-dependent manner.  相似文献   

12.
Two domains of fibronectin deliver two different but cooperative signals required for focal adhesion formation. The signal from the cell-binding domain is mediated by integrins, whereas the signal from the heparin-binding domain is recognized by heparan sulfate proteoglycans, of which syndecan-4 has been hypothesized to be involved in focal adhesion formation. We generated mice deficient in syndecan-4 to study its role directly. Even in fibroblasts from syndecan-4-deficient mice, focal adhesions were formed, and actin fibers terminated normally at focal adhesions when they were cultured on coverslips coated with fibronectin or with a mixture of its cell-binding and heparin-binding fragments. However, when the cells were cultured on the cell-binding fragment and the heparin-binding fragment was added to the medium, focal adhesion formation was impaired in the syndecan-4 null fibroblasts as compared with that in wild-type cells. Therefore, syndecan-4 is essential for promoting focal adhesion formation only when the signal of the heparin-binding domain of fibronectin is delivered as a soluble form, most probably from the apical surface. When the signal is delivered as a substratum-bound form, other molecule(s) also participate(s) in the signal reception.  相似文献   

13.
An expression vector pTF7520-Col-V-In, which encodes a fusion protein of the cell-binding domain of fibronectin (C277) and the insulin- and heparin-binding domain of the alpha 1 chain of human type V collagen, was constructed. E. coli transfected with this plasmid synthesized a 50-kDa fusion protein. This fusion protein, C277-V, was purified from the crude extract by a single step heparin HPLC. Similar amounts of insulin bound to purified C277-V and to the alpha 1 chain of type V collagen as judged by the binding of peroxidase-conjugated insulin. Cell-adhesive activity of C277-V was lower than that of the original fibronectin fragment C274, but similar numbers of cells adhered to both protein substrates when the culture dishes were coated with 1 mM of each protein. Insulin bound to the C277-V substratum stimulated the growth of mouse mammary tumor MTD cells in serum-free culture medium.  相似文献   

14.
Fibronectin contains at least two major domains that support cell adhesion. One is the central cell-binding domain that is recognized by a variety of cell types via the integrin alpha 5 beta 1. The second, originally identified by its ability to support melanoma cell adhesion, is located in the alternatively spliced type III connecting segment (IIICS). A dominant cell type-specific adhesion site within the IIICS has been localized to a peptide designated as CS1 comprising its amino-terminal 25 residues. The receptor for CS1 is the integrin alpha 4 beta 1. We have synthesized a variety of peptides with overlapping sequences in order to identify the minimum active amino acid sequence of this major cell adhesion site. A peptide comprising the carboxyl-terminal 8 amino acids of CS1, EILDVPST, was found to support melanoma cell spreading, while all peptides without this sequence had little or no activity. Two smaller overlapping pentapeptides, EILDV and LDVPS, were also active, whereas EILEV, containing a conservative substitution of Glu for Asp, was inactive. These data suggested that the minimum sequence for cell adhesion activity is Leu-Asp-Val, the tripeptide sequence common to both active peptides. This prediction was confirmed by the observed ability of the Leu-Asp-Val peptide itself to block spreading on fibronectin, whereas Leu-Glu-Val was inactive. Interspecies amino acid sequence comparison also supports the importance of the LDV sequence, since it is completely conserved in the IIICS regions of human, rat, bovine, and avian fibronectins.  相似文献   

15.
Tyroserleutide (YSL) is an active, low-molecular-weight polypeptide, comprised of three amino acids, that has shown antitumor effects on human hepatocarcinoma BEL-7402 in vitro and in vivo. In this study, we evaluated the inhibition of YSL on invasion and adhesion of the mouse B16-F10 melanoma cell line by injecting B16-F10 cells into the tail veins of C57BL/6 mice to establish an experimental lung metastasis model. YSL inhibited B16-F10 cell metastasis to lung, reducing the number and area of metastasis lesions. When we treated B16-F10 cells with YSL (0.01, 0.1, 1, 10, or 100 microg/mL) in vitro, we found that YSL inhibited the proliferation of B16-F10 cells with a 28.11% rate of inhibition. YSL significantly decreased the adhesiveness of B16-F10 cells to Matrigel with a 29.15% inhibition rate; YSL also significantly inhibited the invasion of B16-F10 cells, producing an inhibition of 35.31%. By analyses with Western blot and real-time RT-PCR, we found that YSL markedly inhibited the expression of ICAM-1 in B16-F10 cells. These data suggest that YSL inhibits the growth, invasion, and adhesion of B16-F10 cells.  相似文献   

16.
黑色素瘤作为一种多发于皮肤部位的恶性肿瘤,严重危害着动物和人们的健康。与传统抗体比较,单域抗体具有结构简单、分子量小、免疫原性弱等特点,使其在疾病的诊断及治疗方面具有广阔的应用空间。本研究以B16-F10细胞蛋白质为研究对象,通过反复冻融与超声破碎相结合的方式获得B16-F10蛋白质作为抗原,免疫成年雄性羊驼。采用噬菌体单域抗体展示技术,构建了质量优良的B16-F10细胞蛋白质单域抗体免疫文库,其库容为5.76 × 1010,VHH重组率为96%,文库丰度为3.00 × 1010个/mL。该结果为研究黑色素瘤的生物学特性提供了新思路,同时也为后续筛选B16-F10单域抗体奠定了基础。  相似文献   

17.
黑色素瘤作为一种多发于皮肤部位的恶性肿瘤,严重危害着动物和人们的健康。与传统抗体比较,单域抗体具有结构简单、分子量小、免疫原性弱等特点,使其在疾病的诊断及治疗方面具有广阔的应用空间。本研究以B16-F10细胞蛋白质为研究对象,通过反复冻融与超声破碎相结合的方式获得B16-F10蛋白质作为抗原,免疫成年雄性羊驼。采用噬菌体单域抗体展示技术,构建了质量优良的B16-F10细胞蛋白质单域抗体免疫文库,其库容为5.76 × 1010,VHH重组率为96%,文库丰度为3.00 × 1010个/mL。该结果为研究黑色素瘤的生物学特性提供了新思路,同时也为后续筛选B16-F10单域抗体奠定了基础。  相似文献   

18.
Tripeptidyl peptidase II (TPP II) is a large intracellular exopeptidase with an active site of the subtilisin type. Affinity-purified hen antibodies against human erythrocyte TPP II cross-reacted with fibronectin in an immunoblot analysis. Furthermore, antibodies against human fibronectin cross-reacted with TPP II. Antibodies against a 65 kDa cell-binding fragment of fibronectin specifically reacted with TPP II, whereas antibodies against the collagen-binding domain, the main heparin-binding domain or the N-terminal fibrin-binding domain did not react. Moreover, the affinity-purified antibodies against TPP II reacted with a 105 kDa cell-binding fragment of fibronectin but not with the fibrin-binding domain or the collagen-binding domain. When native TPP II was dissociated into smaller units through dialysis against a dilute Tris buffer, it could be digested by chymotrypsin into three stable fragments of 70 kDa, 42 kDa and 20 kDa. It could be demonstrated that the 42 kDa fragment was specifically recognized by antibodies against the 65 kDa cell-binding fragment of fibronectin. Furthermore, labelling with di-[3H]isopropyl phosphorofluoridate and N-terminal sequence determination showed that the 70 kDa fragment contained the active-site serine residue. In conclusion, our findings suggest that one domain of the TPP II molecule bears structural resemblance to a cell-binding fragment of fibronectin.  相似文献   

19.
1. The interactions of B16-F1 and B16-F10 tumors with their surrounding tissues in terms of enzyme activities such as cathepsin B, hemoglobin(Hb)-hydrolase, acid phosphatase, beta-glucuronidase and plasminogen activator were investigated when said tumors proliferated locally and at secondary sites throughout the host's circulatory system. 2. In the case of B16-F1 and B16-F10 tumor cells proliferating under the skin, statistical differences were not detected between the enzyme activities of the skin surrounding the tumors and control skin, nor between B16-F1 and B16-F10 tumors, except for beta-glucuronidase. 3. In the case of B16-F1 and B16-F10 tumor cells metastasizing to lung, statistical differences were detected between numerous enzyme activities of the lung tissues surrounding the tumors and control lung tissue, and also between B16-F1 and B16-F10 tumors. 4. The activities of cathepsin B and acid phosphatase of lung tissue surrounding B16-F1 tumor were lower than those of the control lung. 5. beta-Glucuronidase activity of lung tissue surrounding B16-F10 tumor was higher than that of the control lung. 6. The activities of cathepsin B, Hb-hydrolase and beta-glucuronidase of the B16-F10 tumor were higher than those of the B16-F1 tumor. 7. Results indicate that metastasized B16 melanoma tumor cells interact with surrounding lung tissues, and that cathepsin B, Hb-hydrolase and beta-glucuronidase might play important roles in the metastasis of the malignant tumor.  相似文献   

20.
In addition to mediating cell adhesion, fibronectin (FN) also affects the migration of different cell types. However, the role of FN in lymphocyte migration is unclear. In this study, we examined the effects of FN on the in vitro migration of lymphocytes. Using the checkerboard analysis in a blind-well microchemotaxis assay, soluble FN was determined to have neither a chemotactic nor chemokinetic effect on spleen or thymus lymphocytes. However, when the nitrocellulose filter was coated unidirectionally with FN, the migration of both spleen and thymus lymphocytes into the filter was enhanced, indicating that FN is haptotactic for lymphocytes. When the filter was coated bidirectionally, no enhancement in migration was observed, indicating that FN is not haptokinetic for lymphocytes. When the FN cell-binding domain and the heparin-binding domain were tested, the cell-binding domain was haptotactic for both spleen and thymus lymphocytes, whereas the heparin-binding domain was only haptotactic for spleen lymphocytes. Because the heparin-binding domain can mediate strong adhesion of thymus lymphocytes, the lack of haptotactic activity is likely to be the result of excessive binding that prevents cell motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号