首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Summary The oncogenic plasmids of Agrobacterium, the Ti-plasmids, carry genes that enable their bacterial host to catabolize opines. Opines are unusual amino acid derivatives that are only produced in crown gall tumours incited by oncogenic strains of Agrobacterium. The 2 opines, octopine and nopaline, are degraded by Agrobacterium strains carrying the octopine or the nopoline Ti-plasmid, respectively, to arginine and pyruvic acid, and to arginine and -ketoglutaric acid. In this paper it is shown that the Ti-plasmids carry gene(s) involved in the utilisation of arginine as a carbon source. Strains harbouring wild type octopine or nopaline Ti-plasmids in the chromosomal context of strain C58C1 do not grow on arginine as a carbon source. However, they are able to grow on arginine provided that they are induced, or constitutive for opine catabolism. The features of ornithine utilisation are identical. The gene(s) involved in arginine and ornithine utilization in C58C1 (pTi-oct) or C58C1 (pTi-nop) are under the control of the regulator gene that controls octopine or nopaline catabolism. A tentative pathway of octopine utilization is proposed, in which at least two steps are Ti-plasmid coded, and probably belong to the same operon: 1-scission of octopine into arginine and pyruvic acid 2-transformation of an arginine derivative (GSA?) to glutamic acid.Arginine utilization as a carbon source is therefore a new function of the Ti-plasmid. As this function is not inducible by arginine but by opines, it provides a method for selecting regulatory mutants of opine catabolism in the genetic background of strain C58.  相似文献   

2.
Utilization of octopine and nopaline by Agrobacterium   总被引:12,自引:5,他引:7       下载免费PDF全文
Tests for utilization of d-octopine and nopaline in defined media containing a carbon and nitrogen source were made on 60 strains of Agrobacterium representing four species and on a representative of each of five species of Rhizobium. Among 46 virulent strains of Agrobacterium, only two strains were found which utilized neither compound, while three strains were found which could utilize both. Of the remaining virulent strains, 27 utilized octopine and 14 utilized nopaline. Each of six strains of A. rhizogenes tested utilized only octopine but at a slower rate relative to growth than most A. tumefaciens. All eight of the A. radiobacter strains failed to utilize either compound, as did four of six nonvirulent strains of A. tumefaciens. The rhizobia did not utilize octopine or, with the possible exception of R. japonicum, nopaline. Virulence in the genus Agrobacterium is concluded to be highly correlated with the ability to utilize one or both of these compounds.  相似文献   

3.
Stable cointegrates between incRh-1 octopine (Ach5) and nopaline (C58) Ti-plasmids, present in ten independently isolated Agrobacterium tumefaciens strains, showed identical restriction endonuclease patterns. Each cointegration event had taken place in the common sequence between the T-regions of both Ti-plasmids. This illustrates a high preference for this region when used in the formation of cointegrates. Four crown gall tissues, obtained after transformation of Nicotiana tabacum cells by one of the mutants, were analysed by using Southern blot analysis for their T-DNA structure. The borders of T-DNA frequently appeared to differ from T-DNA borders previously detected in tumour tissues that had been induced by Agrobacterium strain C58 or Ach5. Therefore, it was concluded that possibly a less stringent mechanism exists for the integration into plant DNA of T-DNA, derived from a composite (octopine/nopaline) T-region than for integration of T-DNA from a normal (octopine or nopaline) T-region.Abbreviations Agr sensitivity to agrocin 84 - Ape phage Apl exclusion - Cb resistance to carbenicillin - Occ octopine catabolism - Ocs octopine synthesis - Noc nopaline catabolism - Nos nopaline synthesis - Rec recombination - Tra transfer - Vir virulence  相似文献   

4.
Transfer of octopine Ti plasmids to strains already carrying an octopine Ti plasmid was found to occur at the same (high) frequency as transfer to Ti plasmid lacking recipients, showing that resident Ti plasmids do not exhibit entry exclusion towards incoming Ti plasmids. The resident octopine Ti plasmid was lost by the recipient after the entrance of the incoming Ti plasmid, which is indicative of the incompatibility between the Ti plasmids. Octopine Ti plasmids were found to become established only infrequently in recipients with a nopaline Ti plasmid and, vice versa, nopaline Ti plasmids were only rarely established in recipients with an octopine Ti plasmid. Rare clones in which the incoming octopine (nopaline) Ti plasmid had been established despite the presence of a nopaline (octopine) Ti plasmid appeared to harbor cointegrates consisting of the entire incoming Ti plasmid and the entire resident Ti plasmid. The integration event invariably had occurred in a region of the plasmids that is highly conserved in evolution and that is essential for oncogenicity. These results show that octopine and nopaline Ti plasmids cannot be maintained as separate replicons by one and the same cell. Therefore, be definition, these plasmids belong to the same incompatibility group, which has been names inc Rh-1. Agrobacterial non-Ti octopine and nopaline plasmids were found to belong to another incompatibility group. The tumorigenic properties of strains harboring two different Ti plasmids, in a cointegrate structure, were indicative of the virulence genes of both of them being expressed. The agrobacterial non-Ti octopine and nopaline plasmids did not influence the virulence properties encoded by the Ti plasmid.  相似文献   

5.
The occ and noc regions in octopine and nopaline Ti plasmids, respectively, are responsible for the catabolism of octopine and nopaline in Agrobacterium. The functions are activated in the presence of the opines by OccR and NocR, two related regulatory proteins, and the promoters contain common sequence motifs. We have investigated heterologous interactions between the regulators and the promoters. Previous experiments using all possible heterologous combinations of opines, regulators, and promoters in vivo had demonstrated that only the combination of nopalme, NocR, and the occ promoter led to limited promoter activation. We now show that OccR and NocR bind to the heterologous promoters in vitro and in vivo. The weak or non-existent promoter activation actually observed could be explained by the assumption that OccR and NocR use different activation mechanisms; we investigated protein-induced DNA bending because of reports that the two regulators differ in this respect. Analysis with a bending vector showed that both OccR and NocR induced a DNA bend that is relaxed in the presence of the respective opine. The data suggest that subtle differences in regulator/promoter interactions are responsible for the inactivity of the heterologous combinations. Investigations with a chimeric NocR/OccR protein indicated that it induced a DNA bend in both promoters. No opine-induced relaxation was detectable with the hybrid, and the inducible promoter was not activated. These findings suggest that bend relaxation may be an integral part of promoter activation.  相似文献   

6.
Mutants of Agrobacterium tumefaciens which affect virulence or the ability to catabolize octopine were isolated after Tn5-induced mutagenesis. Of 8,900 colonies tested, 7 mutants with Tn5 insertions in a specific region of other Ti plasmid unable to catabolize octopine were isolated. Thirty-seven mutants affected in tumorigenesis resulted from insertions in the Ti plasmid and the Agrobacterium chromosome. Of these mutations, 12 were chromosomal and 25 mapped on the plasmid. Twenty-three mapped within a 20-megadalton region, which is distinct from the Ti plasmid sequences found stably integrated into the plant cell genome T-deoxyribonucleic acid). Included in these were mutants that were either a virulent or produced tumors with unusual morphologies. Three mutants contained insertions in the T-deoxyribonucleic acid. These three mutants incited tumors which synthesized octopine but had an altered morphology due to either extensive proliferation of shoots or roots from the tumor callus. Three additional mutants not caused by Tn5 contained mutations in the Ti plasmid.  相似文献   

7.
8.
9.
10.
Arginine catabolism in Agrobacterium strains: role of the Ti plasmid.   总被引:12,自引:6,他引:6  
We present a study of the enzymatic activities involved in the pathway for arginine catabolism by Agrobacterium tumefaciens. Nitrogen from arginine is recovered through the arginase-urease pathway; the genes for these two activities are probably chromosomally born. Arginase was found to be inducible during growth in the presence of arginine or ornithine. Urease was constitutively expressed. Ornithine, resulting from the action of arginase on arginine, could be used as a nitrogen source via transamination to delta 1-pyrroline-5-carboxylate and reduction of the latter compound to proline by a reductase (both enzymatic activities are probably chromosomally encoded). Ornithine could also be used as a carbon source. Thus, we identified an ornithine cyclase activity that was responsible for direct conversion of ornithine to proline. This activity was found to be Ti plasmid encoded and inducible by growth in medium containing octopine or nopaline. The same activity was also chromosomally encoded in some Agrobacterium strains. In such strains, this activity was inducible during growth in arginine-containing medium.  相似文献   

11.
12.
A detailed physical map of the homologous and non-homologous regions between an octopine (pTiAch5) and a nopaline (pTiC58) Ti plasmid was determined by Southern type hybridization and by electron microscope heteroduplex analysis. This map was correlated with the functional maps of both plasmids. For the Southern type hybridizations, total labelled pTiAch5 DNA was hybridized to Southern blots of restriction fragments from a series of hybrid plasmids containing overlapping segments of the whole TiC58 plasmid. Reciprocal experiments were also carried out. The common sequences between the two plasmids (±30%) are restricted to four major stretches of homology. Analysis of heteroduplexes between pTiAch5 and several hybrid plasmids containing specific regions of pTiC58, and of heteroduplexes between hybrid plasmids derived from pTiC58 and pTiAch5 provided a detailed map of the fine structure of the four major homology regions. Two regions are distributed in the same relative order as compared to a common reference point, and two are inversed. Three regions contain a number of small, mostly asymmetrical substitution loops. Several regions distributed over the common DNA sequences were found to be partially homologous.  相似文献   

13.
14.
The occ and noc regions in octopine and nopaline Ti plasmids, respectively, are responsible for the catabolism of octopine and nopaline in Agrobacterium. The functions are activated in the presence of the opines by OccR and NocR, two related regulatory proteins, and the promoters contain common sequence motifs. We have investigated heterologous interactions between the regulators and the promoters. Previous experiments using all possible heterologous combinations of opines, regulators, and promoters in vivo had demonstrated that only the combination of nopalme, NocR, and the occ promoter led to limited promoter activation. We now show that OccR and NocR bind to the heterologous promoters in vitro and in vivo. The weak or non-existent promoter activation actually observed could be explained by the assumption that OccR and NocR use different activation mechanisms; we investigated protein-induced DNA bending because of reports that the two regulators differ in this respect. Analysis with a bending vector showed that both OccR and NocR induced a DNA bend that is relaxed in the presence of the respective opine. The data suggest that subtle differences in regulator/promoter interactions are responsible for the inactivity of the heterologous combinations. Investigations with a chimeric NocR/OccR protein indicated that it induced a DNA bend in both promoters. No opine-induced relaxation was detectable with the hybrid, and the inducible promoter was not activated. These findings suggest that bend relaxation may be an integral part of promoter activation.  相似文献   

15.
16.
The occ and noc regions of octopine and nopaline Ti plasmids in Agrobacterium tumefaciens are responsible for the catabolic utilization of octopine and nopaline, respectively. Opine-inducible promoters, genes for regulatory proteins and for catabolic enzymes, had been identified in previous work. However, both regions contained additional DNA stretches which were under the control of opine-inducible promoters, but the functions were unknown. We investigated these stretches by DNA sequence and functional analyses. The sequences showed that both of the catabolic regions contain a set of four genes which are transcribed in the same direction. The occ and noc region genes are related, but the arrangement of the genes is different. The deduced polypeptides are related to those of binding protein-dependent transport systems of basic amino acids in other bacteria. The comparison suggested that three of the polypeptides are located in the membrane and that one is a periplasmic protein. We constructed cassettes which contained either the putative transport genes only or the complete occ or noc region; all constructs, however, included the elements necessary for opine-induced expression of the genes (the regulatory gene and the inducible promoters). Uptake studies with 3H-labelled octopine showed that the putative transport genes in the occ region code for octopine uptake proteins. The corresponding studies with 3H-labelled nopaline and the noc region cassettes indicated that the uptake of nopaline requires the putative transport genes and additional functions from the left part of the noc region.  相似文献   

17.
Essential steps in the uptake and catabolism of the plant tumor metabolites nopaline and octopine in Agrobacterium spp. are performed by proteins encoded in the nopaline catabolic (noc) and octopine catabolic (occ) regions of Ti plasmids. We investigated the opine activation of the genes by using (i) promoter studies of Agrobacterium spp. and (ii) analysis of the promoter interaction with the regulatory proteins NocR (noc) and OccR (occ). The noc region contained two nopaline-induced promoters (Pi1[noc] and Pi2[noc]) and one autogenously regulated promoter (Pr [control of NocR expression]). Pi2 and Pr overlapped and were divergently oriented (Pi2 [noc]). DNA binding studies and DNase I footprints indicated that NocR bound specifically to single binding sites in Pi1[noc] and Pi2/Pr[noc] and that Pi2 and Pr were regulated from the same binding site. The binding was independent of the inducer nopaline, and nopaline caused small changes in the footprint. The promoters in the noc and occ regions shared sequence motif and contained the sequence T-N11-A, which is characteristic for LysR-type-regulated promoters. The occ region contained one octopine-induced and one autogenously regulated promoter (Pi/Pr[occ]) in the same arrangement as Pi2/Pr[noc] in the noc region. Promoter deletions indicated that sequences flanking the OccR binding site determined the extent of induction, although they did not bind OccR. The promoter bound OccR in the absence and presence of octopine. The opine caused a change in the mobility of the DNA-protein complex with the complete promoter. The resected fragments did not reveal this opine-induced shift, and it was also not detectable with the DNA-NocR complexes with the two promoters of the noc region.  相似文献   

18.
19.
Nopaline (N-[4-[(aminoiminomethyl)amino-]-1S-carboxybutyl]-2R-aminopentanedioic acid and isonopaline (N-[4-[(aminoiminomethyl)amino-1S-carboxybutyl]- 2S-aminopentanedioic acid) have been synthesized and separated by crystallization. In addition, a derivative of each of these compounds that forms spontaneously from the parent compounds under the usual crystallization conditions was isolated and characterized. The chemical properties, elemental analysis, 1H-NMR spectrum, and electrophoretic behavior of the derivative from nopaline are consistent with N-[4-[ (aminoiminomethyl)amino]-1S-carboxybutyl]-2-pyrrolidone-5R-carboxylic acid, also called pyronopaline. The presence of pyronopaline in crown gall tumor tissue and the catabolism of it by the bacterium A. tumefaciens establish it as a new opine.  相似文献   

20.
The growth of crown-gall tumors on primary bean leaves (Phaseolus vulgaris L. cv. “Pinto”) was promoted by the addition of d-lysopine, d-octopine, l-carnosine, or nopaline. Assayed on tumors induced by Agrobacterium tumefaciens strain B6, the relative activity was octopine = carnosine > lysopine nopaline; assayed on tumors induced by A. tumefaciens strain T-37, which induces tumors which form nopaline, the relative activity was nopaline = octopine = carnosine > lysopine. From one to three applications of carnosine or octopine gave equal additive increments in tumor growth, showing that a continual supply of these substances is required to maintain an increased rate of growth. At concentrations above 0.1 mm, pairs of these growth-promoting substances were less active than when applied singly. Inhibition of octopine-induced growth was obtained by applying 0.01 mm carnosine with 1 mm octopine and partial inhibition was obtained when carnosine was added 10 hr after octopine. Equimolar mixtures of lysopine, octopine, and carnosine, however, were at least as active in promoting tumor growth as any of the compounds added singly at equivalent concentrations. The activity of 0.1 to 0.5 mm lysopine, octopine, and carnosine was inhibited, respectively, by 1 mml-lysine, l-arginine, and l-histidine and this inhibition was limited in each case to the basic amino acid corresponding to that of the growth factor. Arginine fully inhibited octopine-induced tumor growth when applied as much as 6 hr after octopine, indicating that this inhibition was not due to prevention of octopine uptake. Although four separate substances were found which promoted tumor growth, the molecular specificity required for activity of each compound was high. Evidence is presented which suggests that a tumor growth-promoting substance extracted from tumorous leaves is a carnosine-like derivative of l-histidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号