首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between induction of central sensitization and facilitation of temporal summation to repetitive stimulation is still unclear. The aim of this study was to investigate temporal summation before and after the induction of secondary hyperalgesia by two different experimental methods: capsaicin injection and controlled heat injury. The effect of each injury model was assessed on a separate day with an interval of at least 5 days. Twelve healthy volunteers participated. Each experiment was performed using electrical, radiant heat, mechanical impact, and punctuate stimuli consecutively. The pain threshold (PT) to a single stimulus and the summation threshold to five repetitive stimuli for electrical (2?Hz) and radiant heat (0.83?Hz) were assessed within the secondary hyperalgesic area. The degree of temporal summation for stimulus intensities of 0.8, 1.0, and 1.2 times the baseline pain thresholds were evaluated by the increase in visual analogue scale (VAS) scores from the first to the fifth stimulus of the train. Further, the degrees of temporal summation were assessed for mechanical impact and punctuate stimuli within the primary and secondary hyperalgesic areas. The contra-lateral forearm served as control (no injury). The pain threshold and the summation threshold to electrical and heat stimuli decreased significantly within the secondary hyperalgesic area after the injury induced by both heat injury or capsaicin injection. However, there was no temporal summation for heat and electrical stimuli in either model. In contrast, for the mechanical impact and punctuate mechanical stimuli the degree of temporal summation was significantly facilitated in the secondary hyperalgesic areas compared with the baseline and the control arm in both models. In the primary hyperalgesic area, the degree of temporal summation was facilitated to mechanical impact and punctuate stimuli but only following the capsaicin injection. In conclusion, the temporal summation mechanism for mechanical stimuli was facilitated in the secondary hyperalgesic area.  相似文献   

2.
The relationship between induction of central sensitization and facilitation of temporal summation to repetitive stimulation is still unclear. The aim of this study was to investigate temporal summation before and after the induction of secondary hyperalgesia by two different experimental methods: capsaicin injection and controlled heat injury. The effect of each injury model was assessed on a separate day with an interval of at least 5 days. Twelve healthy volunteers participated. Each experiment was performed using electrical, radiant heat, mechanical impact, and punctuate stimuli consecutively. The pain threshold (PT) to a single stimulus and the summation threshold to five repetitive stimuli for electrical (2 Hz) and radiant heat (0.83 Hz) were assessed within the secondary hyperalgesic area. The degree of temporal summation for stimulus intensities of 0.8, 1.0, and 1.2 times the baseline pain thresholds were evaluated by the increase in visual analogue scale (VAS) scores from the first to the fifth stimulus of the train. Further, the degrees of temporal summation were assessed for mechanical impact and punctuate stimuli within the primary and secondary hyperalgesic areas. The contra-lateral forearm served as control (no injury). The pain threshold and the summation threshold to electrical and heat stimuli decreased significantly within the secondary hyperalgesic area after the injury induced by both heat injury or capsaicin injection. However, there was no temporal summation for heat and electrical stimuli in either model. In contrast, for the mechanical impact and punctuate mechanical stimuli the degree of temporal summation was significantly facilitated in the secondary hyperalgesic areas compared with the baseline and the control arm in both models. In the primary hyperalgesic area, the degree of temporal summation was facilitated to mechanical impact and punctuate stimuli but only following the capsaicin injection. In conclusion, the temporal summation mechanism for mechanical stimuli was facilitated in the secondary hyperalgesic area.  相似文献   

3.
The properties of a newly developed tonic heat pain model (THPM), which makes use of pulsating contact heat, were investigated in 18 young men. The most important feature of this model is that repetitive heat pulses with an intensity of 1°C above the individual pain threshold are employed. This approach was used to tailor the tonic pain stimulation to the individual pain sensitivity. In the first of two experiments, the effects of pulse frequencies ranging from 5 to 30 pulses per minute (ppm) on ratings of pain intensity and pain unpleasantness (visual analogue scales) were examined. At all frequencies, both ratings increased steadily over the 5-min test period. Frequencies of 15 ppm or more appeared to enhance pain intensity throughout the test period compared to the lower frequencies, but did not appear to alter pain unpleasantness. This suggests that only pain intensity is influenced by slow temporal summation and that a sort of frequency threshold exists for this kind of summation. In the second experiment, the THPM was compared to a well-established form of tonic pain stimulation, the compressor test (CPT); visual analogue scales were again used, and in addition the McGill Pain Questionnaire was employed. The CPT appeared to produce stronger tonic pain than the THPM. However, as is typical with tonic pain, both tonic pain models induced relatively higher values on the affective pain dimension than on the sensory pain dimension. The time course of pain was dynamic in the CPT, with an increase followed by a plateau phase, at least in those subjects who could tolerate the CPT for more than 60 sec. In contrast, as in the first experiment, the pain ratings in the THPM were characterized by a slow and steady increase over time. Moreover, there was absolutely no indication of a dichotomy between “pain-sensitive” and “pain-tolerant” individuals in the THPM, although such a dichotomy was evident in the CPT. This implies that the distinction between pain-sensitive and pain-tolerant individuals can be made only with the CPT, and that this distinction represents individual differences in peripheral vascular reactions to cold rather than in pain perception. In conclusion, the THPM appears to produce a stable and predictable temporal pattern of tonic pain with a predominant affective component, and to be suitable for application in the majority of individuals without causing undue discomfort.  相似文献   

4.
Two-cell mouse eggs were irradiated by a helium-cadmium laser on a spot of about 4 micron2 (d = 2.2 micron) in one or both nuclei either continuously or repeatedly at 0.36 erg micron-2 sec-1 and then cultured to observe cellular development. After exposing one nucleus to the microbeam to five or seven 1-sec pulses (1.80 or 2.52 ergs micron-2, respectively), about 45% developed to the 3-cell stage in 24 hr of culture. In overnight cultures of the 2-cell eggs in which both nuclei were irradiated for 9 or 20 sec continuously, 40 (9 sec) and 50% (20 sec) of the eggs remained at the 2-cell stage, while 45 (9 sec) and 25% (20 sec) developed to the 4-cell stage. Irradiating only one nucleus in a 2-cell egg by seven pulses in a spot of 4 micron2 amounting to 10 ergs reduced cleavage 45%. When both nuclei were each irradiated by a 9-sec continuous laser beam (totaling 13 ergs), about 40% of the embryos of the 2-cell stage did not divide. The effect of seven pulses on the blastomere cleavage of 2-cell mouse eggs appeared to be comparable to that of continuous 9-sec laser irradiation. Both pulse and continuous laser microirradiation methods may be developed for inactivation of the nucleus as a nonpipetting , less injurious method for enucleation of mammalian eggs.  相似文献   

5.
Temporal summation was estimated by measuring the detection thresholds for pulses with durations of 1–50 ms in the presence of noise maskers. The purpose of the study was to examine the effects of the spectral profiles and intensities of noise maskers on temporal summation, to investigate the appearance of signs of peripheral processing of pulses with various frequency-time structures in auditory responses, and to test the opportunity to use temporal summation for speech recognition. The central frequencies of pulses and maskers were similar. The maskers had ripple structures of the amplitude spectra of two types. In some maskers, the central frequencies coincided with the spectrum humps, whereas in other maskers, they coincided with spectrum dip (so-called on- and off-maskers). When the auditory system differentiated the masker humps, then the difference between the thresholds of recognition of the stimuli presented together with each of two types of maskers was not equal to zero. The assessment of temporal summation and the difference of the thresholds of pulse recognition under conditions of the presentation of the on- and off-maskers allowed us to make a conclusion on auditory sensitivity and the resolution of the spectral structure of maskers or frequency selectivity during presentation of pulses of various durations in local frequency areas. In order to estimate the effect of the dynamic properties of hearing on sensitivity and frequency selectivity, we changed the intensity of maskers. We measured temporal summation under the conditions of the presentation of on- and off-maskers of various intensities in two frequency ranges (2 and 4 kHz) in four subjects with normal hearing and one person with age-related hearing impairments who complained of a decrease in speech recognition under noise conditions. Pulses shorter than 10 ms were considered as simple models of consonant sounds, whereas tone pulses longer than 10 ms were considered as simple models of vowel sounds. In subjects with normal hearing in the range of moderate masker intensities, we observed an enhancement of temporal summation when the short pulses or consonant sounds were presented and an improvement of the resolution of the broken structure of masker spectra when the short and tone pulses, i.e., consonant and vowel sounds, were presented. We supposed that the enhancement of the summation was related to the refractoriness of the fibers of the auditory nerve. In the range of 4 kHz, the subject with age-related hearing impairments did not recognize the ripple structure of the maskers in the presence of the short pulses or consonant sounds. We supposed that these impairments were caused by abnormal synchronization of the responses of the auditory nerve fibers induced by the pulses, and this resulted in a decrease in speech recognition.  相似文献   

6.
Exact predictions for two-pulse visual temporal integration data are derived from the Bouman-van der Velden quantum coincidence model for threshold vision. The predictions of the model start with complete summation for superposed pulses, then pass to a transition zone of partial integration, and finally reach the level of probability summation for pulses presented with large interstimulus intervals. From our results we can clearly reject the assumption of constant integration times with the basic model. We thus generalize the coincidence model to allow for variable integration times, derive the corresponding predictions for two-pulse integration data, and compare these predictions to published data currently available. It is shown that detectors of low order of coincidence generally underestimate the actual reduction of threshold intensity (or equivalently the corresponding increase of the detection probability) for two pulses as compared to the singlepulse performance.  相似文献   

7.
The pheromone-sensitive receptor cells of male moth antennae are capable of detecting the rapid changes in stimulus intensity encountered in natural pheromone odour plumes. We investigated temporal response characteristics of the two receptor cell types of the sensillum trichodeum of female Bombyx mori, which are most sensitive to benzoic acid and 2,6-dimethyl-5-heptene-2-ol (DMH), respectively. The cells were repetitively stimulated with 50-ms pulses of benzoic acid and (±)-linalool, an effective mimic of DMH, at various pulse rates and different stimulus intensities. By recording receptor potentials and nerve impulses we demonstrated that both receptor cell types were able to follow stimulus pulses at least up to eight pulses per sec, with a more pronounced modulation of the responses in the DMH cell. The resolution capability of the two cell types showed little dependence on stimulus intensity. In their ability to resolve pulsed odour stimuli, the receptor cells for benzoic acid and DMH were as good as pheromone receptor cells.  相似文献   

8.
Both sexually mature and sexually regressed male golden hamsters were transferred to asymmetric skeleton photoperiods with night interruptions of varying duration, the short pulses occurring 14 h after "dawn." Testicular function and accompanying changes in follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone and spermatogenesis were observed. Sexually regressed animals exposed to a night-break of 6 seconds (sec) or longer exhibited maximal testicular development with a rapid rise in FSH secretion followed by a slower, more variable rise in LH. Full testicular size was achieved after 8 weeks. Night-breaks of 250 milliseconds (msec) or 1 sec induced testicular development and spermatogenesis but at a slower rate: levels of FSH and LH were still rising at the end of the experiment. Complete testicular maintenance was achieved by night-breaks of 1 sec or longer. Partial testicular regression was observed with a night-break of 250 msec. Night-breaks (60 sec) given less frequently than daily also stimulated testicular function and a night-break every 7 days increased FSH and LH secretion in sexually regressed hamsters, causing testicular development at a submaximal rate. Night-breaks given more frequently induced rapid testicular growth. Almost complete testicular maintenance of sexually mature hamsters was achieved with a 60-sec night-break at weekly intervals. Symmetric skeleton photoperiods also triggered testicular development in sexually regressed hamsters, with two 1-sec light pulses (14 h apart) being almost as effective as a normal long day. No difference in reproductive function was observed between animals on long days (14L:10D) and those exposed to maximally stimulatory skeleton photoperiods.  相似文献   

9.
Temporal summation of second pain and long-lasting tactile-evoked aftersensations are examples of sensory phenomenons that cannot be explained on the basis of responses of primary afferents. Two distinct classes of monkey spinothalamic tract neurons have responses to controlled natural stimuli that parallel and thus could account for the above phenomenons. One class, termed wide-dynamic-range, receives excitatory effects from sensitive mechanoreceptive afferents and from various nociceptive afferents including Adelta and C mechanothermal nociceptive afferents. Another class, termed nociceptive-specific, receives excitatory effects exclusively from primary nociceptive afferents. Both classes respond with an early and late response to a single noxious heat pulse (peak temperature = 51 C). The late response, unlike C nociceptive afferents but like second pain, summates in magnitude with each successive heat pulse. Gentle moving tactile stimuli evoke long-lasting (20-56 sec) after-discharges only in wide dynamic range neurons, and are similar in duration to the tactile after-sensation evoked by similar stimuli. Both the after-discharges and after-sensations can be abruptly terminated by rubbing the affected region. Temporal summation of second pain and cutaneous after-sensations are at least partly subserved by spinal cord mechanisms within the dorsal horn and are manifested in the output of spinothalamic tract neurons.  相似文献   

10.
A nine-day acoustic and visual survey was conducted off the West Indies in March 1994 to study the pulse trains that were detected on SOSUS arrays throughout winter in deep water between the West Indies and Bermuda. During the survey, pulse train sounds were consistently recorded in an area 190–350 km northeast of Puerto Rico. Vocalizing animals were never visually observed, but visual sighting conditions were often poor and observation height was low. Pulse trains occurred in two basic forms. The "speed-up" pulse train was characterized by an accelerating series of pulses with energy in the 200–400 Hz band, with individual pulses lasting 40-60 msec. Speedup pulse trains started with average pulse rates of 1.5 pulses/sec, lasted 43.7 ± 6.0 sec, and ended with average pulse rates of 2.8 pulses/sec. The less common "slow-down" pulse train was characterized by a decelerating series of pulses with energy in the 250-350 Hz band. Slow-down pulse trains started at pulse rates averaging 4.5 pulses/sec, lasted 60.9 ± 5.8 sec, and ended with average pulse rates of 2.9 pulses/sec. We believe the recorded pulse trains are from minke whales based on careful reanalysis of, and comparison to, minke whale pulse-train sounds recorded in the Caribbean by Winn and Perkins (1976).  相似文献   

11.
We investigated the response selectivities of single auditory neurons in the torus semicircularis of Batrachyla antartandica (a leptodactylid from southern Chile) to synthetic stimuli having diverse temporal structures. The advertisement call for this species is characterized by a long sequence of brief sound pulses having a dominant frequency of about 2000 Hz. We constructed five different series of synthetic stimuli in which the following acoustic parameters were systematically modified, one at a time: pulse rate, pulse duration, pulse rise time, pulse fall time, and train duration. The carrier frequency of these stimuli was fixed at the characteristic frequency of the units under study (n=44). Response patterns of TS units to these synthetic call variants revealed different degrees of selectivity for each of the temporal variables. A substantial number of neurons showed preference for pulse rates below 2 pulses s(-1), approximating the values found in natural advertisement calls. Tonic neurons generally showed preferences for long pulse durations, long rise and fall times, and long train durations. In contrast, phasic and phasic-burst neurons preferred stimuli with short duration, short rise and fall times and short train durations.  相似文献   

12.
Nerves to fast- and slow-twitch cat muscles were stimulated with various numbers of supramaximal pulses under isometric conditions. By subtracting the force produced by j - 1 pulses from that produced by j pulses, the contribution of the j th pulse could be compared with the response to one pulse (twitch response). A less-than-linear summation (depression) was observed during the rising phase of the twitch. This depression became increasingly prominent and longer in duration with repetitive stimulation. A more-than-linear summation (facilitation) was observed during the falling phase of the twitch, which became increasingly delayed and smaller in amplitude with repetitive stimulation. The early depression could be abolished for the first few pulses by Dantrolene [1-(5-p-nitrophenyl) furfurilidene amino hydantoin sodium hydrate], which reduced Ca++ release from the sarcoplasmic reticulum. The depression was less prominent at short muscle lengths or with stimulation of single motor units. A first-order, saturable reaction such as Ca++ binding to troponin or actin binding to myosin can quantitatively account for the early depression.  相似文献   

13.
Psychophysical thresholds were measured as the frequency, size and duration of vibration on the thenar eminence was varied. The results supported the theory that there are two functionally distinct receptor systems in the skin for the perception of mechanical disturbances. Spatial and temporal summation were found for the detection of high- but not low-frequency stimuli. Furthermore, magnitude estimation data revealed that temporal summation occurs for the perception of high-frequency stimuli presented over a wide range of suprathershold values. On the other hand, temporal summation was absent for low frequency stimuli that were presented at 5, 10, 15, and 20 db above threshold.  相似文献   

14.
Green lacewings stop flying in response to ultrasound. The behavioural response begins with folding of the wings, which starts about 40 msec following stimulation. About 66 msec later potentials from the indirect flight muscles cease. Insects resume their stationary flight after a certain period of time, which is dependent on the stimulus duration. Consistent responses occur only during the insects' night. Stimuli eliciting the cessation of flight have the following parameters: frequencies of from 15 to 140 kHz, intensities above 55 dB, single pulses of from 1 to 100 msec in duration, and pulse sequences having repetition rates up to 70 or 80 pulses/sec. Pulse sequences from 0·1 to 1 sec produce response durations that last longer than the stimulus, whereas pulse sequences longer than 1 sec, elicit responses that do not last as long as the stimulus. The duration of the response remains nearly constant when single ultrasonic pulses are given. This flight cessation behaviour provides a mechanism whereby green lacewings can avoid predation by bats. Responses seen in green lacewings are compared with similar responses in noctuid moths.  相似文献   

15.
The temporal relationship of several hormones to a metabolite of prostaglandin F2α (PGFM) was studied in mares and heifers from the beginning of the first PGFM pulse during luteolysis to the end of the second pulse. Mares (n=7) were selected with a 9-h interval between the peaks of the two pulses. In mares, estradiol-17β (estradiol) increased (P<0.05) within each PGFM pulse and plateaued for a mean of 6h between the pulses, resulting in a stepwise estradiol increase. Progesterone decreased linearly (P<0.0001) throughout the intra-pulse and inter-pulse intervals of PGFM. In heifers (n=6), inter-pulse intervals were variable, and therefore Hours 1-4 of the first pulse (Hour 0=PGFM peak) and Hours -4 to -1 of the second pulse were used to represent the mean 8-h interval between peaks of the two pulses. Estradiol increased (P<0.05) during the ascending portion of each PGFM pulse and then decreased (P<0.05) beginning at Hour -1 of the first PGFM pulse and Hour 0 of the second pulse. The 1-h delay during the second pulse was accompanied by an apparent increase in PRL. A transient decrease in estradiol occurred in individuals between PGFM pulses at a mean of 5h after the first PGFM peak, concomitant with a transient LH increase (P<0.05). Results indicated that estradiol plateaued in mares and fluctuated in heifers during the interval between PGFM pulses. Heifers also showed temporal relationships between estradiol and LH and apparently between estradiol and PRL.  相似文献   

16.
Electrically triggered action potentials in the giant alga Chara corallina are associated with a transient rise in the concentration of free Ca(2)+ in the cytoplasm (Ca(2)+(cyt)). The present measurements of Ca(2)+(cyt) during membrane excitation show that stimulating pulses of low magnitude (subthreshold pulse) had no perceivable effect on Ca(2)+(cyt). When the strength of a pulse exceeded a narrow threshold (suprathreshold pulse) it evoked the full extent of the Ca(2)+(cyt) elevation. This suggests an all-or-none mechanism for Ca(2)+ mobilization. A transient calcium rise could also be induced by one subthreshold pulse if it was after another subthreshold pulse of the same kind after a suitable interval, i.e., not closer than a few 100 ms and not longer than a few seconds. This dependency of Ca(2)+ mobilization on single and double pulses can be simulated by a model in which a second messenger is produced in a voltage-dependent manner. This second messenger liberates Ca(2)+ from internal stores in an all-or-none manner once a critical concentration (threshold) of the second messenger is exceeded in the cytoplasm. The positive effect of a single suprathreshold pulse and two optimally spaced subthreshold pulses on Ca(2)+ mobilization can be explained on the basis of relative velocity for second messenger production and decomposition as well as the availability of the precursor for the second messenger production. Assuming that inositol-1,4,5,-trisphosphate (IP(3)) is the second messenger in question, the present data provide the major rate constants for IP(3) metabolism.  相似文献   

17.
A theory is developed enabling one to calculate the temporal profile and spectrum of a terahertz wave packet from the energy of the second harmonic of optical radiation generated during the nonlinear interaction between terahertz and circularly polarized laser pulses in the skin layer of an overdense plasma. It is shown that the spectral and temporal characteristics of the envelope of the second harmonic of optical radiation coincide with those of the terahertz pulse only at small durations of the detecting laser radiation. For long laser pulses, the temporal profile and spectrum of the second harmonic are mainly determined by the characteristics of optical radiation at the carrier frequency.  相似文献   

18.
Females of the parasitoid fly Emblemasoma auditrix find their host cicada (Okanagana rimosa) by its acoustic signals. In laboratory experiments, fly phonotaxis had a mean threshold of about 66 dB SPL when tested with the cicada calling song. Flies exhibited a frequency dependent phonotaxis when testing to song models with different carrier frequencies (pulses of 6 ms duration and a repetition rate of 80 pulses s(-1)). However, the phonotactic threshold was rather broadly tuned in the range from 5 kHz to 11 kHz. Phonotaxis was also dependent on the temporal parameters of the song models: repetition rates of 60 pulses s(-1) and 80 pulses s and pulse durations of 5-7 ms resulted in the highest percentages of phonotaxis performing animals coupled with the lowest threshold values. Thus, parasitoid phonotaxis is adapted especially to the temporal parameters of the calling song of the host. Choice experiments revealed a preference of a song model with 9 kHz carrier frequency (peak energy of the host song) compared with 5 kHz carrier frequency (electrophysiologically determined best hearing frequency). However, this preference changed with the relative sound pressure level of both signals. When presented simultaneously, E. auditrix preferred 5-kHz signals, if they were 5 dB SPL louder than the 9-kHz signal.  相似文献   

19.
Perceptual decisions are thought to be mediated by a mechanism of sequential sampling and integration of noisy evidence whose temporal weighting profile affects the decision quality. To examine temporal weighting, participants were presented with two brightness-fluctuating disks for 1, 2 or 3 seconds and were requested to choose the overall brighter disk at the end of each trial. By employing a signal-perturbation method, which deploys across trials a set of systematically controlled temporal dispersions of the same overall signal, we were able to quantify the participants’ temporal weighting profile. Results indicate that, for intervals of 1 or 2 sec, participants exhibit a primacy-bias. However, for longer stimuli (3-sec) the temporal weighting profile is non-monotonic, with concurrent primacy and recency, which is inconsistent with the predictions of previously suggested computational models of perceptual decision-making (drift-diffusion and Ornstein-Uhlenbeck processes). We propose a novel, dynamic variant of the leaky-competing accumulator model as a potential account for this finding, and we discuss potential neural mechanisms.  相似文献   

20.
Summary Charge-pulse experiments were performed on giant algal cells ofValonia utricularis. For a charging time of 420 sec the breakdown voltage is about 750 mV (18°C), a value that is in close agreement with earlier results obtained with current pulses (Coster & Zimmermann, 1975;J. Membrane Biol. 22:73). If the membrane is charged to the breakdown voltage in a shorter time, the breakdown voltage is found to be a function of the duration of the charge pulses. Whereas towards smaller pulse lengths down to 10 sec only a small, but significant, increase in the breakdown voltage is observed (1.1 V at 10 sec pulse length and 18°C), a strong increase in the breakdown voltage is found for even shorter charging times. For a pulse length of 800 nsec the breakdown voltage has a value of about 2.4 V (18°C) and a plateau seems to be reached for a pulse duration of 500 nsec. The influence of temperature on the breakdown voltage as observed for short charging times is very similar to that reported earlier for current pulses of 500 sec duration. For charge pulses of 1 to 2 sec duration the breakdown voltage decreases from 3.6 V at 3°C to 1.6 V at 25°C by more than a factor of two.Voltage relaxation studies in the low-field range suggest that the time constants of the two membranes arranged in series, tonoplast and plasmalemma, are similar. From this, it is suggested that both membranes show electrical breakdown, whereby the breakdown voltage of a single membrane is probably half the value of the total breakdown voltage. Its dependence on pulse length is therefore considered to be an intrinsic property of one single membrane. The strong dependence of the breakdown voltage on the charging time of the membrane further supports the interpretation of the breakdown phenomenon on the basis of the electro-mechanical model proposed earlier. In this model it is assumed that the electrical and mechanical compressive forces are counter balanced by elastic restoring forces within the membrane. However, towards very short pulses (less than 800 nsec), where a plateau seems to be reached, other processes may be generated by the application of the electric field. We discuss whether one of these processes is the ion movement through the membranes induced by a high electric field (Born energy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号