首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NO complex of lipoxygenase with EPR signals near g = 4.0 is an S = 3/2 system with D approximately 15 cm-1 similar to Fe2+-EDTA-NO. This may result from antiferromagnetic coupling of axial (D greater than E) high spin ferrous iron to NO. The other NO complex of lipoxygenase, with EPR signals below ge, may result from rhombic high spin ferrous iron coupled to NO with D greater than J. The quenching of both signals by a hydroperoxy derivative of linoleic acid probably represents replacement of NO by an oxygen ligand.  相似文献   

2.
Optical and EPR studies indicate that the iron present in lipoxygenase participates in catalysis. Addition of linoleic acid hydroperoxide to lipoxygenase 1 causes an increase in abosrbance over the range of 350 to 650 nm which is reversed when linoleic acid hydroperoxide is destroyed upon the addition of linoleic acid under anaerobic conditions. Lipoxygenase 1 alone exhibits no EPR signal but upon addition of linoleic acid hydroperoxide or linoleic acid several signals appear. Addition of linoleic acid hydroperoxide results in an EPR signal at g approximately equal to 6 accompanied by a small but relatively sharp signal at g approximately equal to 2. Under anaerobic conditions the latter is replaced by a broad anisotropic signal around g approximately equal to 2. The appearance of the EPR signal at g approximately equal to 6 coincides with the change in the optical spectrum of the enzyme. When linoleic acid is added under anaerobic conditions a broad anisotropic EPR signal around g approximately equal to 2 is observed. Thus it appears that lipoxygenase can exist in two forms: (a) a resting form with a very weak absorbance in the visible range of the light spectrum and no EPR signal and (b) an active form (after addition of linoleic acid hydroperoxide) with an increased optical absorbance and EPR signal at g approximately equal to 6. This observation may be related to the earlier discovery that the lipoxygenase reaction occurs with a lag which can be overcome by addition of product hydroperoxide. The EPR experiments indicate that lipoxygenase in the active form contains high spin ferric ion. Although EPR signals in the g approximately equal to 6 region are frequently observed with heme proteins, the only nonheme protein, other than lipoxygenase, reported to show an EPR signal in this region is the phenolytic dioxygenase, protocatechuate 3,4-dioxygenase (Peisach, J., Fujisawa, H., Blumberg, W. E., and Hayaishi, O. (1972) Fed. Proc. 31, 448).  相似文献   

3.
Micromolar concentrations of N-octylhydroxylamine dramatically increase the induction period in the conversion of linoleic acid to 13(S)-hydroperoxy-cis-9,trans-11-octadecadienoic acid (13-HPOD) catalyzed by soybean lipoxygenase 1. The induction period produced by N-octylhydroxylamine is abolished by 13-HPOD but not by the corresponding hydroxy acid. Addition of a catalytic amount of lipoxygenase to a mixture of 13-HPOD and N-octylhydroxylamine results in consumption of approximately 1 mumol of 13-HPOD/mumol of N-octylhydroxylamine present. These results can be explained by a model in which 13-HPOD oxidizes the enzyme from an inactive ferrous form to an active ferric form, as proposed by previous workers, and N-octylhydroxylamine reduces the enzyme back to the ferrous form. Consistent with this model, the ESR signal at g = 6.1 characteristic of ferric lipoxygenase is rapidly abolished by N-octylhydroxylamine and can be regenerated by 13-HPOD. These results provide additional support for earlier proposals that ferric lipoxygenase is the catalytically active form and also establish a novel method of inhibiting enzymes in this class. The octyl group of N-octylhydroxylamine appears to contribute to binding near the iron, since hydroxylamine and N-methylhydroxylamine do not extend the induction period. In the n-RNHOH series, activity passes through an optimum at R = decyl.  相似文献   

4.
The electron paramagnetic resonance(EPR) signals of Fusarium lipoxygenase were measured at liquid nitrogen temperature in the presence or absence of substrate, linoleic acid. The spin-state exchange of heme iron in Fusarium lipoxygenase from a low to high spin-state by the addition of linoleic acid was observed. The addition of linoleic acid to the enzyme at pH 9.0 gave rise to the appearance of EPR lines at g=5.92 and 3.58, while at pH 12.0, lines at g=6.12 and 3.41 were newly appeared. At the same time, the resonance at g=4.31 was increased both at pH 9.0 and 12.0 in the presence of linoleic acid.  相似文献   

5.
M Sono  J H Dawson  K Hall  L P Hager 《Biochemistry》1986,25(2):347-356
Equilibrium binding studies of exogenous ligands and halides to the active site heme iron of chloroperoxidase have been carried out from pH 2 to 7. Over twenty ligands have been studied including C, N, O, P, and S donors and the four halides. As judged from changes in the optical absorption spectra, direct binding of the ligands to the heme iron of ferric or ferrous chloroperoxidase occurs in all cases; this has been ascertained for the ferric enzyme in several cases through competition experiments with cyanide. All of the ligands except for the halides, nitrate, and acetate form exclusively low-spin complexes in analogy to results obtained with the spectroscopically related protein, cytochrome P-450-CAM [Sono, M., & Dawson, J.H. (1982) J. Biol. Chem. 257, 5496-5502]. The titration results show that, for the ferric enzyme, (i) weakly acidic ligands (pKa greater than 3) bind to the enzyme in their neutral (protonated) form, followed by deprotonation upon ligation to the heme iron. In contrast, (ii) strongly acidic ligands (pKa less than 0) including SCN-, NO3-, and the halides except for F- likely bind in their anionic (deprotonated) form to the acid form of the enzyme: a single ionizable group on the protein with a pKa less than 2 is involved in this binding. For the ferrous enzyme, (iii) a single ionizable group with the pKa value of 5.5 affects ligand binding. These results reveal that chloroperoxidase, in spite of the previously established close spectroscopic and heme iron coordination structure similarities to the P-450 enzymes, clearly belongs to the hydroperoxidases in terms of its ligand binding properties and active site heme environment. Magnetic circular dichroism studies indicate that the alkaline form (pH 9.5) of ferric chloroperoxidase has an RS-ferric heme-N donor ligand coordination structure with the N donor likely derived from histidine imidazole.  相似文献   

6.
An enzyme with at least dual activities, lipoxygenase and fatty acid lyase, has been isolated from Vicia sativa seeds. The enzyme utilizes directly linoleic acid as substrate. The enzyme had a pH optimum at 5.8 for the two activities and converted linoleic acid into two products: 9-hydroperoxylinoleic acid and trans-2, cis-4 decadienal. The enzyme does not act on 13- or 9- fatty acid hydroperoxide isomers. An enzymatic reaction for the biogenesis of trans-2, cis-4- decadienal is proposed. This involves the synthesis of an intermediate peroxyl radical due to oxygen insertion in carbon 9 of linoleic acid. This intermediate peroxyl radical may be converted into 9-HPOD and 2,4-decadienal.  相似文献   

7.
1. The self-inactivation of lipoxygenase from rabbit reticulocytes with linoleic acid at 37 degrees C is caused by the product 13-hydroperoxylinoleic acid. This inactivation is promoted by either oxygen or linoleic acid. 2. Lipohydroperoxidase activity was demonstrated with 13-hydroperoxylinoleic acid plus linoleic acid as hydrogen donor under anaerobic conditions at 2 degrees C. The products were 13-hydroxylinoleic acid, oxodienes and compounds of non-diene structure similar to those produced by soybean lipoxygenase-1. 3. 13-Hydroperoxylinoleic acid also changed the absorbance and fluorescence properties of reticulocyte lipoxygenase. The results indicate that one equivalent of 13-hydroperoxylinoleic acid converts the enzyme from the ferrous state into the ferric state as described for soybean lipoxygenase-1. The spectral changes were reversed by sodium borohydride at 2 degrees C, but not at 37 degrees C; it is assumed that the ferric form of reticulocyte lipoxygenase suffers inactivation.  相似文献   

8.
The wound-inducible lipoxygenase obtained from maize is one of the nontraditional lipoxygenases that possess dual positional specificity. In this paper, we provide our results on the determination and comparison of the kinetic constants of the maize lipoxygenase, with or without detergents in the steady state, and characterization of the dependence of the kinetic lag phase or initial burst, on pH, substrate, and detergent in the pre-steady state of the lipoxygenase reaction. The oxidation of linoleic acid showed a typical lag phase in the pre-steady state of the lipoxygenase reaction at pH 7.5 in the presence of 0.25% Tween-20 detergent. The reciprocal correlation between the induction period and the enzyme level indicated that this lag phenomenon was attributable to the slow oxidative activation of Fe (II) to Fe (III) at the active site of the enzyme as observed in other lipoxygenase reactions. Contrary to the lagging phenomenon observed at pH 7.5 in the presence of Tween-20, a unique initial burst was observed at pH 6.2 in the absence of detergents. To our knowledge, the initial burst in the oxidation of linoleic acid at pH 6.2 is the first observation in the lipoxygenase reaction. Kinetic constants (K(m) and k(cat) values) were largely dependent on the presence of detergent. An inverse correlation of the initial burst period with enzyme levels and interpretations on kinetic constants suggested that the observed initial burst in the oxidation of linoleic acid could be due to the availability of free fatty acids as substrates for binding with the lipoxygenase enzyme.  相似文献   

9.
1. The EPR spectrum at 15 degrees K of soybean lipoxygenase-1 in borate buffer pH 9.0 has been studied in relation to the presence of substrate (linoleic acid), product (13-L-hydroperoxylinoleic acid) and oxygen. 2. The addition of 13-L-hydroperoxylinoleic acid to lipoxygenase-1 at pH 9.0 gives rise to the appearance of EPR lines at g equals 7.5, 6.2, 5.9 and 2.0, and an increased signal at g equals 4.3. 3. In view of the effect of the end product on both the kinetic lag period of the aerobic reaction and the fluorescence of the enzyme, it is concluded that 13-L-hydroperoxylinoleic acid is required for the activation of soybean lipoxygenase-1. Thus it is proposed that the enzyme with iron in the ferric state is the active species. 4. A reaction scheme is presented in which the enzyme alternatingly exists in the ferric and ferrous states for both the aerobic and anaerobic reaction.  相似文献   

10.
Manganese lipoxygenase was isolated from the take-all fungus, Gaeumannomyces graminis, and the oxygenation mechanism was investigated. A kinetic isotope effect, k(H)/k(D) = 21-24, was observed with [U-(2)H]linoleic acid as a substrate. The relative biosynthesis of (11S)-hydroperoxylinoleate (11S-HPODE) and (13R)-hydroperoxylinoleate (13R-HPODE) was pH-dependent and changed by [U-(2)H]linoleic acid. Stopped-flow kinetic traces of linoleic and alpha-linolenic acids indicated catalytic lag times of approximately 45 ms, which were followed by bursts of enzyme activity for approximately 60 ms and then by steady state (k(cat) approximately 26 and approximately 47 s(-1), respectively). 11S-HPODE was isomerized by manganese lipoxygenase to 13R-HPODE and formed from linoleic acid at the same rates (k(cat) 7-9 s(-1)). Catalysis was accompanied by collisional quenching of the long wavelength fluorescence (640-685 nm) by fatty acid substrates and 13R-HPODE. Electron paramagnetic resonance (EPR) of native manganese lipoxygenase showed weak 6-fold hyperfine splitting superimposed on a broad resonance indicating two populations of Mn(II) bound to protein. The addition of linoleic acid decreased both components, and denaturation of the lipoxygenase liberated approximately 0.8 Mn(2+) atoms/lipoxygenase molecule. These observations are consistent with a mononuclear Mn(II) center in the native state, which is converted during catalysis to an EPR silent Mn(III) state. We propose that manganese lipoxygenase has kinetic and redox properties similar to iron lipoxygenases.  相似文献   

11.
Properties of a Lipoxygenase in Green Algae (Oscillatoria sp.)   总被引:4,自引:1,他引:3       下载免费PDF全文
A lipoxygenase preparation was obtained from green algae Oscillatoria sp. and was shown to differ from previous described lipoxygenases in the positional specificity and pH characteristics of the dioxygenation reaction. The enzyme had a pH optimum at 8.8 and was inactive at pH 6. Oscillatoria lipoxygenase converted linoleic acid into two products: 13-hydroperoxylinoleic acid (52%) and 9-hydroperoxylinoleic acid (48%). The molecular weight of the enzyme was estimated at 124,000. Esculetin was found to be the best inhibitor of the enzyme activity.  相似文献   

12.
A lipoxygenase (EC 1.13.1.13) was partially purified from potato tubers and was shown to differ from previously characterized soya-bean lipoxygenases in the positional specificity and pH characteristics of the oxygenation reaction. The potato enzyme converted linoleic acid almost exclusively (95%) into 9-d-hydroperoxyoctadeca-trans-10,cis-12-dienoic acid. The 13-hydroperoxy isomer was only a minor product (5%). Linolenic acid was an equally effective substrate, which was also oxygenated specifically at the 9-position. The enzyme had a pH optimum at 5.5-6.0 and was inactive at pH9.0. A half-maximal velocity was obtained at a linoleic acid concentration of 0.1mm. No inhibition was observed with EDTA (1mm) and cyanide (1mm) or with p-chloromercuribenzoate (0.2mm). Haemoproteins were not involved in the lipoxygenase activity. The molecular weight of the enzyme was estimated from gel filtration to be approx. 10(5). Preliminary evidence suggested that the enzyme oxygenated the n-10 position of fatty acids containing a penta(n-3, n-6)diene structure.  相似文献   

13.
While incubation of soybean lipoxygenase with alpha-linolenic acid resulted in the gradual decrease of lipoxygenase activity, the incubation with linoleic acid had no change. The inactivation of soybean lipoxygenase during incubation with alpha-linolenic acid was markedly observed at pH 6.5, but not at pH 9.0. Among the lipoxygenation products of alpha-linolenic acid, only 9(S)-hydroperoxyoctadecatrienoic acid caused the inactivation of lipoxygenase. 9(S)-Hydroxyoctadecatrienoic acid, 13(S)-hydroperoxyoctadecatrienoic acid or 9,16-dihydroperoxy conjugated trienoic acid was without effect. Accordingly, it is suggested that the epoxide intermediate, one conversion product of 9(S)-hydroperoxyoctadecatrienoic acid, might be involved in the direct inactivation of lipoxygenase.  相似文献   

14.
Myeloperoxidase was purified from human polymorphonuclear leukocytes and the effect of chloride upon the EPR and potentiometric properties was studied. The redox titration between the ferrous and ferric states of the enzyme yielded n = 1 Nernst plots between pH 9 and 4, with clear isosbestic points in the optical spectra during the redox change. The midpoint potential (Em) between the ferric and ferrous forms of the enzyme exhibited a pH-dependent change between pH 4 and 9, and the effect of added chloride ion indicated that Cl- competed with OH- for a binding site on the enzyme. Interestingly, the pH dependence of the Em indicated that the overall redox reactions of the enzyme was: ferric myeloperoxidase + 2e- + 1H+ = ferrous myeloperoxidase. Myeloperoxidase exhibited a rhombic high spin EPR signal which exhibited reduced rhombicity upon the binding of chloride. Our results strongly suggest that chloride binds to the sixth coordination position of the chlorin iron in myeloperoxidase by replacing the water which is the sixth ligand in the resting state. It is also concluded that the two iron centers are identical and that there is no interaction between them.  相似文献   

15.
1. A major component of the lipids in aqueous (pH7.5) homogenates of tuber tissue from Solanum tuberosum was isolated and characterized as 9-(nona-1',3'-dienoxy)non-8-enoic acid. 2. This novel unsaturated ether fatty acid derivative, which contains a butadienylvinyl ether function, has the structure: [Formula: see text] and is formed from linoleic acid by a sequence of enzymic reactions. 3. A precursor of the unsaturated ether derivative is 9-d-hydroperoxyoctadeca-10,12-dienoic acid, formed by the action of S. tuberosum lipoxygenase on linoleic acid. 4. An enzyme that converts the fatty acid hydroperoxide into the unsaturated ether derivative was isolated from S. tuberosum. The pH optimum of this enzyme is approx. 9, although the overall conversion of linoleic acid into the ether derivative is maximal at pH7.5. 5. An unusual feature of this pathway is the insertion of an oxygen atom into the alkyl chain of a fatty acid. 6. This novel mechanism may play a role in the breakdown of polyunsaturated fatty acids to volatile products in plants.  相似文献   

16.
12-Iodo-cis-9-octadecenoic acid (12-IODE) is a time-dependent, irreversible inactivator of soybean lipoxygenase 1. The rate of inactivation is independent of 12-IODE concentration above 20 microM and is half-maximal at about 4 microM. Inactivation by 12-IODE requires lipid hydroperoxide, which must be present even after the initial oxidation of the iron in the enzyme from ferrous to ferric. Inactivation by 12-IODE is also dependent on O2. These findings suggest that 12-IODE is converted by the enzyme into a more reactive species, which is responsible for inactivation. No inactivation has been detected with 12-iodooctadecanoic acid, 12-bromo-cis-9-octadecenoic acid, 12-iodo-trans-9-octadecenoic acid, or a mixture of stereoisomers of 9,11-octadecadienoic acid.  相似文献   

17.
The appearance and subsequent disappearance of lipoxygenase activity at pH 6.8 in germinated cotyledons of soybean (Glycine max [L.]) was shown using a variant soybean cultivar (Kanto 101) that lacks the two lipoxygenase isozymes, L-2 and L-3, that are present in dry seeds of a normal soybean cultivar (Enrei). Three new lipoxygenases, designated lipoxygenase L-4, L-5, and L-6, were purified using anionic or cationic ion exchange chromatography. The major lipoxygenase in 5-day-old cotyledons of the variant soybean was lipoxygenase L-4. Lipoxygenases L-5 and L-6 preferentially produced 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoic acid (13S-HPOD) as a reaction product of linoleic acid, whereas lipoxygenase L-4 produced both 13S-HPOD and 9(S)-hydroperoxy-10(E), 12(Z)-octadecadienoic acid. All three isozymes have pH optima of 6.5, no activity at pH 9.0, and preferred linolenic acid to linoleic acid as a substrate. Partial amino acid sequencing of lipoxygenase L-4 showed that this isozyme shares amino acid sequence homology with lipoxygenases L-1, L-2, and L-3 but is not identical to any of them. This indicates that a new lipoxygenase, L-4, is expressed in cotyledons.  相似文献   

18.
1. Dioxygenase activity and the ability of pregnant rat lung lipoxygenase to oxidize xenobiotics were examined in vitro under a variety of experimental conditions. 2. More than 90% of the dioxygenase activity towards linoleic acid in the lung homogenate was found to be associated with the cytosolic fraction. The cytosolic enzyme exhibited pH optima at 6.5 and 9.5, the activity being two-fold greater at pH 9.5. To observe maximal dioxygenase activity (about 0.7 mumol of 13-hydroperoxylinoleic acid formed/min per mg protein) at pH 9.5, the presence of 6.0 mM linoleic acid was required. 3. Benzidine oxidation occurred at maximal rate of pH 6.5 when the reaction medium contained 1.0 mM benzidine and 13.5 mM linoleic acid. All eight xenobiotics tested were oxidized at significant rates by the lung cytosolic lipoxygenase. 4. Both dioxygenase activity and benzidine oxidation were inhibited by the inhibitors of lipoxygenase, viz. nordihydroguaiaretic acid, BHT, caffeic acid, esculetin, and gossypol, in a concentration-dependent manner. 5. The results suggest that oxidation of xenobiotics by lipoxygenase may be an important pathway of metabolism in the mammalian lung.  相似文献   

19.
Enzyme-bound pentadienyl and peroxyl radicals in purple lipoxygenase   总被引:1,自引:0,他引:1  
M J Nelson  S P Seitz  R A Cowling 《Biochemistry》1990,29(29):6897-6903
Samples of purple lipoxygenase prepared by addition of either 13-hydroperoxy-9,11-octadecadienoic acid or linoleic acid and oxygen to ferric lipoxygenase contain pentadienyl and/or peroxyl radicals. The radicals are identified by the g values and hyperfine splitting parameters of natural abundance and isotopically enriched samples. The line shapes of their EPR spectra suggest the radicals are conformationally constrained when compared to spectra of the same radicals generated in frozen linoleic acid. Further, the EPR spectra are unusually difficult to saturate. The radicals are stable in buffered aqueous solution at 4 degrees C for several minutes. All of this implies that these species are bound to the enzyme, possibly in proximity to the iron. Only peroxyl radical is seen when the purple enzyme is generated with either hydroperoxide or linoleic acid in O2-saturated solutions. Addition of natural abundance hydroperoxide under 17O-enriched O2 leads to the 17O-enriched peroxyl radical, while the opposite labeling results in the natural abundance peroxyl radical, demonstrating the exchange of oxygen. Both radicals are detected in samples of purple lipoxygenase prepared with either linoleic acid or hydroperoxide under air. Addition of the hydroperoxide in the absence of oxygen favors the pentadienyl radical. We propose that addition of either linoleic acid or hydroperoxide to ferric lipoxygenase leads to multiple mechanistically connected enzyme complexes, including those with (hydro)peroxide, peroxide, peroxyl radical, pentadienyl radical, and linoleic acid bound. This hypothesis is essentially identical with the proposed radical mechanism of oxygenation of polyunsaturated fatty acids by lipoxygenase.  相似文献   

20.
G S Lukat  K R Rodgers  H M Goff 《Biochemistry》1987,26(22):6927-6932
Electron paramagnetic resonance (EPR) studies of the nitrosyl adduct of ferrous lactoperoxidase (LPO) confirm that the fifth axial ligand in LPO is bound to the iron via a nitrogen atom. Complete reduction of the ferric LPO sample is required in order to observe the nine-line hyperfine splitting in the ferrous LPO/NO EPR spectrum. The ferrous LPO/NO complex does not exhibit a pH or buffer system dependence when examined by EPR. Interconversion of the ferrous LPO/NO complex and the ferric LPO/NO2- complex is achieved by addition of the appropriate oxidizing or reducing agent. Characterization of the low-spin LPO/NO2- complex by EPR and visible spectroscopy is reported. The pH dependence of the EPR spectra of ferric LPO and ferric LPO/CN- suggests that a high-spin anisotropic LPO complex is formed at high pH and an acid-alkaline transition of the protein conformation near the heme site does occur in LPO/CN-. The effect of tris(hydroxymethyl)aminomethane buffer on the LPO EPR spectrum is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号