首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic regulation of T cell immunity by CD43   总被引:5,自引:0,他引:5  
During a viral response, Ag-specific effector T cells show dramatically increased binding by the mAb 1B11 and the lectin peanut agglutinin (PNA). We investigated the contribution of CD43 expression to 1B11 and PNA binding as well as its role in generation and maintenance of a CD8 T cell response. Analysis of CD43(-/-) mice revealed no increased 1B11 binding and reduced PNA binding on virus-specific CD8 T cells from -/- mice compared with +/+ mice. Furthermore, we examined the role of CD43 in the kinetics of an immune response. We show that CD43 expression modestly effects generation of a primary virus-specific CD8 T cell response in vivo but plays a more significant role in trafficking of CD8 T cells to tissues such as the brain. More interestingly, CD43 plays a role in the contraction of the immune response, with CD43(-/-) mice showing increased numbers of Ag-specific CD8 T cells following initial expansion. Following the peak of expansion, Ag-specific CD8 T cells from -/- mice show similar proliferation but demonstrate increased Bcl-2 levels and decreased apoptosis of Ag-specific effector CD8 T cells in vitro. Consistent with a delay in the down-modulation of the immune response, following chronic viral infection CD43(-/-) mice show increased morbidity. These data suggest a dynamic role of CD43 during an immune response: a positive regulatory role in costimulation and trafficking of T cells to the CNS and a negative regulatory role in the down-modulation of an immune response.  相似文献   

2.
The role of the CD8-, CD4- (double negative) (DN) T cells accumulating in MRL/Mp-lpr/lpr (lpr) mice is unclear. Although they bear the TCR/CD3, the lpr DN cells do not respond to Ag, and the specificity of TCR/CD3 on these cells is unknown. With the aid of monoclonal anti-murine CD3 epsilon (145-2C11), we have investigated the function of the CD3 molecule on the DN cells. 145-2C11 was not mitogenic for lpr DN lymph node cells (LNC), even in the presence of the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, whereas MRL/Mp-+/+ (+/+) LNC responded strongly. Surprisingly, CD3 modulation induced by 145-2C11 was much more rapid for lpr DN than for +/+ LNC. For example, the modulation observed after 10 min in lpr DN LNC required at least 2 h in +/+ cells. This was not due solely to a property of the 145-2C11 antibody, because both TPA and the F23.1 anti-TCR mAb also provoked a faster modulation of the TCR in lpr DN LNC. Double-staining experiments showed that co-culturing +/+ and lpr DN LNC did not alter their respective rates of modulation, which suggests an intrinsic defect in the lpr DN cells. Moreover, in LNC from 6-wk-old lpr mice (before the appearance of DN cells), as well as in normal phenotype-bearing T cells (CD8+ or CD4+) from 6-mo-old lpr mice, the CD3 modulation was similar to that of +/+ LNC. After modulation, the CD3 molecule was reexpressed at the surface of both +/+ and lpr DN cells during subsequent incubation of the cells without 145-2C11. In addition, spontaneous recycling of CD3 was similar in +/+ and lpr DN LNC. The rapid modulation of the lpr DN TCR/CD3 is presumably related to the anergy of this cell population.  相似文献   

3.
CD28-B7 interaction plays a critical costimulatory role in inducing T cell activation, while CTLA-4-B7 interaction provides a negative signal that is essential in immune homeostasis. Transfer of CD45RB(high)CD4(+) T cells from syngeneic mice induces transmural colon inflammation in SCID recipients. This adoptive transfer model was used to investigate the contribution of B7-CD28/CTLA-4 interactions to the control of intestinal inflammation. CD45RB(high)CD4(+) cells from CD28(-/-) mice failed to induce mucosal inflammation in SCID recipients. Administration of anti-B7.1 (but not anti-B7.2) after transfer of wild-type CD45RB(high)CD4(+) cells also prevented wasting disease with colitis, abrogated leukocyte infiltration, and reduced production of proinflammatory cytokines IL-2 and IFN-gamma by lamina propria CD4(+) cells. In contrast, anti-CTLA-4 treatment led to deterioration of disease, to more severe inflammation, and to enhanced production of proinflammatory cytokines. Of note, CD25(+)CD4(+) cells from CD28(-/-) mice similar to those from the wild-type mice were efficient to prevent intestinal mucosal inflammation induced by the wild-type CD45RB(high) cells. The inhibitory functions of these regulatory T cells were effectively blocked by anti-CTLA-4. These data show that the B7-CD28 costimulatory pathway is required for induction of effector T cells and for intestinal mucosal inflammation, while the regulatory T cells function in a CD28-independent way. CTLA-4 signaling plays a key role in maintaining mucosal lymphocyte tolerance, most likely by activating the regulatory T cells.  相似文献   

4.
CD69 is highly expressed by lymphocytes at mucosal surfaces. We aimed to investigate the role of CD69 in mucosal immune responses. The expression of CD69 by CD4 T cells isolated from the spleen, mesenteric lymph nodes, small intestinal lamina propria, and colonic lamina propria was determined in specific pathogen-free B6 and TCR transgenic animals, as well as in germ-free B6 mice. Transfer colitis was induced by transplanting RAG(-/-) mice with B6 or CD69(-/-)CD45RB(high) CD4 T cells. CD69 expression by CD4 T cells is induced by the intestinal microflora, oral delivery of specific Ag, and type I IFN (IFN-I) signals. CD4 T cells from CD69(-/-) animals produce higher amounts of the proinflammatory cytokines IFN-γ, TNF-α, and IL-21, whereas the production of TGF-β1 is decreased. CD69-deficient CD4 T cells showed reduced potential to differentiate into Foxp3(+) regulatory T cells in vivo and in vitro. The transfer of CD69(-/-)CD45RB(high) CD4 T cells into RAG(-/-) hosts induced an accelerated colitis. Oral tolerance was impaired in CD69(-/-) and IFN-I receptor 1-deficient mice when compared with B6 and OT-II × RAG(-/-) animals. Polyinosinic-polycytidylic acid treatment of RAG(-/-) mice transplanted with B6 but not CD69(-/-) or IFN-I receptor 1-deficient CD45RB(high) CD4 T cells attenuated transfer colitis. CD69 deficiency led to the increased production of proinflammatory cytokines, reduced Foxp3(+) regulatory T cell induction, impaired oral tolerance, and more severe colitis. Hence, the activation Ag CD69 plays an important role in regulating mucosal immune responses.  相似文献   

5.
The mechanisms by which the immune system achieves constant T cell numbers throughout life, thereby controlling autoaggressive cell expansions, are to date not completely understood. Here, we show that the CD25(+) subpopulation of naturally activated (CD45RB(low)) CD4 T cells, but not CD25(-) CD45RB(low) CD4 T cells, inhibits the accumulation of cotransferred CD45RB(high) CD4 T cells in lymphocyte-deficient mice. However, both CD25(+) and CD25(-) CD45RB(low) CD4 T cell subpopulations contain regulatory cells, since they can prevent naive CD4 T cell-induced wasting disease. In the absence of a correlation between disease and the number of recovered CD4(+) cells, we conclude that expansion control and disease prevention are largely independent processes. CD25(+) CD45RB(low) CD4 T cells from IL-10-deficient mice do not protect from disease. They accumulate to a higher cell number and cannot prevent the expansion of CD45RB(high) CD4 T cells upon transfer compared with their wild-type counterparts. Although CD25(+) CD45RB(low) CD4 T cells are capable of expanding when transferred in vivo, they reach a homeostatic equilibrium at lower cell numbers than CD25(-) CD45RB(low) or CD45RB(high) CD4 T cells. We conclude that CD25(+) CD45RB(low) CD4 T cells from nonmanipulated mice control the number of peripheral CD4 T cells through a mechanism involving the production of IL-10 by regulatory T cells.  相似文献   

6.
Li W  Green WR 《Journal of virology》2006,80(12):5777-5789
LP-BM5, a retroviral isolate, induces a disease featuring retrovirus-induced immunodeficiency, designated murine AIDS (MAIDS). Many of the features of the LP-BM5-induced syndrome are shared with human immunodeficiency virus-induced disease. For example, CD4 T cells are critical to the development of MAIDS. In vivo depletion of CD4 T cells before LP-BM5 infection rendered genetically susceptible B6 mice MAIDS resistant. Similarly, MAIDS did not develop in B6.nude mice. However, if reconstituted with CD4 T cells, B6.nude mice develop full-blown MAIDS. Our laboratory has shown that the interaction of B and CD4 T cells that is central to MAIDS pathogenesis requires ligation of CD154 on CD4 T cells with CD40 on B cells. However, it is not clear which additional characteristics of the phenotypically and functionally heterogeneous CD4 T-cell compartment are required. Here, in vivo adoptive transfer experiments using B6.nude recipients are employed to compare the pathogenic abilities of CD4 T-cell subsets defined on the basis of cell surface phenotypic or functional differences. Th1 and Th2 CD4 T cells equally supported MAIDS induction. The rare Thy1.2(-) CD4 subset that expands upon LP-BM5 infection was not necessary for MAIDS. Interestingly, CD45RB(low) CD4 T cells supported significantly less disease than CD45RB(high) CD4 T cells. Because the decreased MAIDS pathogenesis could not be attributed to inhibition by CD45RB(low) CD25(+) natural T-regulatory cells, an intrinsic property of the CD45RB(low) cells appeared responsible. Similarly, there was no evidence that natural T-regulatory cells played a role in LP-BM5-induced pathogenesis in the context of the intact CD4 T-cell population.  相似文献   

7.
T cells from enlarged lymph nodes of MRL/MpJ-lpr/lpr (lpr) mice were found to express more binding sites for strongly hemagglutinating Phaseolus vulgaris agglutinin (PHA-E4) and fewer binding sites for Ricinus communis aglutinin (RCA) than those from normal MRL/MpJ-+/+ (+/+) mouse lymph node. We found that high-molecular-weight (180K-220K) glycoproteins on lpr T cells were strongly stained with these lectins on Western-blotting. These glycoproteins were found to belong to the CD45 family, by absorption with monoclonal anti-CD45 antibody. We also found that the other glycoproteins (105K and 120K glycoproteins on lpr T cells and a 105K glycoprotein on +/+ T cells) were strongly stained with the lectins which preferentially bind to mucin-type (O-linked) sugar chains on the cell surface. These glycoproteins were found to be leukosialins, by absorption with anti-leukosialin serum. From the results of the lectin-binding to these glycoproteins after sialidase treatment, CD45 antigens and leukosialin molecules on lpr T cells were found to have many more terminal alpha 2,3-linked sialic acids than those on +/+ T cells, and this fact explains why lpr T cells have more binding sites for PHA-E4 but fewer binding sites for RCA.  相似文献   

8.
Although the role of CD28-B7 interaction in the activation of naive T cells is well established, its importance in the generation and maintenance of T cell memory is not well understood. In this study, we examined the requirement for CD28-B7 interactions in primary T cell activation and immune memory. Ag-specific CD8 T cell responses were compared between wild-type (+/+) and CD28-deficient (CD28(-/-)) mice following an acute infection with lymphocytic choriomeningitis virus (LCMV). During the primary response, there was a substantial activation and expansion of LCMV-specific CD8 T cells in both +/+ and CD28(-/-) mice. However, the magnitude of the primary CD8 T cell response to both dominant and subdominant LCMV CTL epitopes was approximately 2- to 3-fold lower in CD28(-/-) mice compared with +/+ mice; the lack of CD28-mediated costimulation did not lead to preferential suppression of CD8 T cell responses to the weaker subdominant epitopes. As seen in CD28(-/-) mice, blockade of B7-mediated costimulation by CTLA4-Ig treatment of +/+ mice also resulted in a 2-fold reduction in the anti-LCMV CD8 T cell responses. Loss of CD28/B7 interactions did not significantly affect the generation and maintenance of CD8 T cell memory; the magnitude of CD8 T cell memory was approximately 2-fold lower in CD28(-/-) mice as compared with +/+ mice. Further, in CD28(-/-) mice, LCMV-specific memory CD8 T cells showed normal homeostatic proliferation in vivo and also conferred protective immunity. Therefore, CD28 signaling is not necessary for the proliferative renewal and maintenance of memory CD8 T cells.  相似文献   

9.
To improve cancer immunotherapy, it is important to understand how tumor cells counteract immune-surveillance. In this study, we sought to identify cell-surface molecules associated with resistance of leukemia cells to cytotoxic T cell (CTL)-mediated cytolysis. To this end, we first established thousands of monoclonal antibodies (mAbs) that react with MLL/AF9 mouse leukemia cells. Only two of these mAbs, designated R54 and B2, bound preferentially to leukemia cells resistant to cytolysis by a tumor cell antigen–specific CTLs. The antigens recognized by these mAbs were identified by expression cloning as the same protein, CD43, although their binding patterns to subsets of hematopoietic cells differed significantly from each other and from a pre-existing pan-CD43 mAb, S11. The epitopes of R54 and B2, but not S11, were sialidase-sensitive and expressed at various levels on leukemia cells, suggesting that binding of R54 or B2 is associated with the glycosylation status of CD43. R54high leukemia cells, which are likely to express sialic acid-rich CD43, were highly resistant to CTL-mediated cytolysis. In addition, loss of CD43 in leukemia cells or neuraminidase treatment of leukemia cells sensitized leukemia cells to CTL-mediated cell lysis. These results suggest that sialic acid-rich CD43, which harbors multiple sialic acid residues that impart a net negative surface charge, protects leukemia cells from CTL-mediated cell lysis. Furthermore, R54high or B2high leukemia cells preferentially survived in vivo in the presence of adaptive immunity. Taken together, these results suggest that the glycosylation status of CD43 on leukemia is associated with sensitivity to CTL-mediated cytolysis in vitro and in vivo. Thus, regulation of CD43 glycosylation is a potential strategy for enhancing CTL-mediated immunotherapy.  相似文献   

10.
We identified CD8(+)CD122(+) regulatory T cells (Tregs) and demonstrated their importance in the maintenance of immune homeostasis and in the recovery from experimental autoimmune encephalomyelitis. In this paper, we show that CD8(+)CD122(+) Tregs effectively prevent and cure colitis in a mouse model. In our experiments, colitis was induced in lymphocyte-deficient RAG-2(-/-) mice by transferring CD4(+)CD45RB(high) cells that were excluded with CD4(+) Tregs. Cotransfer of CD8(+)CD122(+) cells clearly suppressed the development of colitis, and this suppressive effect was similar to that of CD4(+)CD45RB(low) cells that were mostly CD4(+) Tregs. CD8(+)CD122(+) cells obtained from IL-10(-/-) mice were unable to suppress colitis, indicating that IL-10 is an important effect-transmitting factor in the suppression of colitis. CD8(+)CD122(+) cells showed a suppressive effect when they were transferred 4 wk after CD4(+)CD45RB(high) cells, indicating the therapeutic potential of CD8(+)CD122(+) cells. A mixture of CD8(+)CD122(+) cells and CD4(+)CD45RB(low) cells was far more effective than single Tregs, indicating the synergistic effect of these Tregs. These overall findings demonstrate the potential role of CD8(+) Tregs, and possibly together with CD4(+) Tregs, in the medical care of inflammatory bowel disease patients.  相似文献   

11.
Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells   总被引:36,自引:0,他引:36  
CD4(+)CD25(+) regulatory T cells have been shown to prevent T cell-mediated immune pathology; however, their ability to ameliorate established inflammation has not been tested. Using the CD4(+)CD45RB(high) T cell transfer model of inflammatory bowel disease, we show that CD4(+)CD25(+) but not CD4(+)CD25(-)CD45RB(low) T cells are able to cure intestinal inflammation. Transfer of CD4(+)CD25(+) T cells into mice with colitis led to resolution of the lamina propria infiltrate in the intestine and reappearance of normal intestinal architecture. CD4(+)CD25(+) T cells were found to proliferate in the mesenteric lymph nodes and inflamed colon. They were located between clusters of CD11c(+) cells and pathogenic T cells and found to be in contact with both cell types. These studies suggest that manipulation of CD4(+)CD25(+) T cells may be beneficial in the treatment of chronic inflammatory diseases.  相似文献   

12.
CD4(+)CD25(+) regulatory T cells in normal animals are engaged in the maintenance of immunological self-tolerance and prevention of autoimmune disease. However, accumulating evidence suggests that a fraction of the peripheral CD4(+)CD25(-) T cell population also possesses regulatory activity in vivo. Recently, it has been shown glucocorticoid-induced TNFR family-related gene (GITR) is predominantly expressed on CD4(+)CD25(+) regulatory T cells. In this study, we show evidence that CD4(+)GITR(+) T cells, regardless of the CD25 expression, regulate the mucosal immune responses and intestinal inflammation. SCID mice restored with the CD4(+)GITR(-) T cell population developed wasting disease and severe chronic colitis. Cotransfer of CD4(+)GITR(+) population prevented the development of CD4(+)CD45RB(high) T cell-transferred colitis. Administration of anti-GITR mAb-induced chronic colitis in mice restored both CD45RB(high) and CD45RB(low) CD4(+) T cells. Interestingly, both CD4(+)CD25(+) and CD4(+)CD25(-) GITR(+) T cells prevented wasting disease and colitis. Furthermore, in vitro studies revealed that CD4(+)CD25(-)GITR(+) T cells as well as CD4(+)CD25(+)GITR(+) T cells expressed CTLA-4 intracellularly, showed anergic, suppressed T cell proliferation, and produced IL-10 and TGF-beta. These data suggest that GITR can be used as a specific marker for regulatory T cells controlling mucosal inflammation and also as a target for treatment of inflammatory bowel disease.  相似文献   

13.
It has been recently demonstrated that NKG2D is an activating costimulatory receptor on natural killer (NK) cells, natural killer T (NKT) cells, activated CD8(+) T cells, and gammadelta T cells, which respond to cellular stress, such as inflammation, transformation, and infection. Here we show that intestinal inflammation in colitic SCID mice induced by adoptive transfer of CD4(+)CD45RB(high) T cells is characterized by significant increase of CD4(+)NKG2D(+) T cells and constitutive expression of NKG2D ligands, such as H60, Mult-1, and Rae-1, by lamina propria CD11c(+) dendritic cells. Furthermore, treatment with nondepleting and neutralizing anti-NKG2D MAb after transfer of CD4(+)CD45RB(high) T cells into SCID mice significantly suppressed wasting disease with colitis, abrogated leukocyte infiltration, and reduced production of IFN-gamma by lamina propria CD4(+) T cells. These findings demonstrate that NKG2D signaling pathway is critically involved in CD4(+) T cell-mediated disease progression and suggest a new therapeutic target for inflammatory bowel diseases.  相似文献   

14.
TLRs that mediate the recognition of pathogen-associated molecular patterns are widely expressed on/in cells of the innate immune system. However, recent findings demonstrate that certain TLRs are also expressed in conventional TCRalphabeta(+) T cells that are critically involved in the acquired immune system, suggesting that TLR ligands can directly modulate T cell function in addition to various innate immune cells. In this study, we report that in a murine model of chronic colitis induced in RAG-2(-/-) mice by adoptive transfer of CD4(+)CD45RB(high) T cells, both CD4(+)CD45RB(high) donor cells and the expanding colitogenic lamina propria CD4(+)CD44(high) memory cells expresses a wide variety of TLRs along with MyD88, a key adaptor molecule required for signal transduction through TLRs. Although RAG-2(-/-) mice transferred with MyD88(-/-)CD4(+)CD45RB(high) cells developed colitis, the severity was reduced with the delayed kinetics of clinical course, and the expansion of colitogenic CD4(+) T cells was significantly impaired as compared with control mice transferred with MyD88(+/+)CD4(+)CD45RB(high) cells. When RAG-2(-/-) mice were transferred with the same number of MyD88(+/+) (Ly5.1(+)) and MyD88(-/-) (Ly5.2(+)) CD4(+)CD45RB(high) cells, MyD88(-/-)CD4(+) T cells showed significantly lower proliferative responses assessed by in vivo CFSE division assay, and also lower expression of antiapoptotic Bcl-2/Bcl-x(L) molecules and less production of IFN-gamma and IL-17, compared with the paired MyD88(+/+)CD4(+) T cells. Collectively, the MyD88-dependent pathway that controls TLR signaling in T cells may directly promote the proliferation and survival of colitogenic CD4(+) T cells to sustain chronic colitis.  相似文献   

15.
Although the concept that dendritic cells (DCs) recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R). Here we report that C57BL/6.B2R-/- mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.]) in B2R-/- heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i.) showed high and comparable frequencies of IFN-gamma-producing CD4+ and CD8+ T cells in the spleen of B2R-/- and wild-type mice. However, production of IFN-gamma by effector T cells isolated from B2R-/- heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-gamma-producing (CD4+CD44+ and CD8+CD44+) T cells both in the spleen and heart while B2R-/- mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R-/- mice was linked to upregulated secretion of IL-17 and TNF-alpha by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86) is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R-/- mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously) into B2R-/- mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired resistance to T. cruzi infection.  相似文献   

16.
The large (LI) and small intestine (SI) differ in patterns of susceptibility to chronic mucosal inflammation. In this study, we evaluated whether this might, in part, reflect differences in resident mucosal CD11c(+) T cells. These cells comprised 39-48% (SI) and 12-17% (LI) of the intraepithelial compartment, most of which were T-cell receptor-αβ(+). In the SI, the majority of these cells were CD103(+) CD8(+) NK1.1(-), whereas the opposite phenotype prevailed in the LI. In transfer models of CD4(+) T cell-induced colitis, small numbers (2.5 × 10(5)) of SI CD11c(+) CD8(+) T cells suppressed proinflammatory cytokine-producing CD4(+) T cells in mesenteric lymph nodes and mucosa-associated lymphoid compartments (SI and LI) and protected mice from chronic inflammation. On a per-cell basis, the regulatory function of SI CD11c(+) T cells in CD4(+) T cell colitis was potent compared with other reported regulatory CD4(+) or CD8(+) T cells. In contrast, neither LI CD11c(+) T cells nor SI CD11c(-) T cells were effective in such immunoregulation. SI CD11c(+) CD8(+) T cells were similarly effective in suppressing CD4(+)CD45RB(hi) T cell colitis, as evidenced by inhibition of intracellular proinflammatory cytokine expression and histological inflammation. These findings indicate that SI CD11c(+) CD8(+) T cells are a distinct intestinal T cell population that plays an immunoregulatory role in control of proinflammatory CD4(+) T cells and maintenance of intestinal mucosal homeostasis.  相似文献   

17.
CD43 functions as a ligand for E-Selectin on activated T cells   总被引:4,自引:0,他引:4  
E-selectin, an inducible cell adhesion molecule expressed on endothelial cells, mediates the rolling on endothelium of leukocytes expressing E-selectin ligands, such as neutrophils and activated T cells. Although previous studies using mice lacking P-selectin glycoprotein ligand-1 (PSGL-1) have indicated that PSGL-1 on Th1 cells functions as an E-selectin ligand, the molecular nature of E-selectin ligands other than PSGL-1 remains unknown. In this study, we show that a 130-kDa glycoprotein was precipitated by an E-selectin-IgG chimera from mouse Th1 cells. This protein was cleaved by O-sialoglycoprotein endopeptidase and required sialic acid for E-selectin binding. The mAb 1B11, which recognizes the 130-kDa glycoform of CD43, recognized the 130-kDa band in the E-selectin-IgG precipitate. In addition, immunoprecipitation of the E-selectin-IgG precipitate with 1B11 depleted the 130-kDa protein, further confirming its identity as CD43. CD43 was also precipitated with E-selectin-IgG from cultured human T cells. E-selectin-dependent cell rolling on CD43 was observed under flow conditions using a CD43-IgG chimera generated in Chinese hamster ovary cells expressing alpha-1,3-fucosyltransferase VII and a core 2 beta-1,6-N-acetylglucosaminyltransferase. These results suggest that CD43, when modified by a specific set of glycosyltranferases, can function as an E-selectin ligand and therefore potentially mediate activated T cell migration into inflamed sites.  相似文献   

18.
Studies in both humans and rodents have suggested that CD8+ T cells contribute to the development of airway hyperresponsiveness (AHR) and that leukotriene B4 (LTB4) is involved in the chemotaxis of effector CD8+ T cells (T(EFF)) to the lung by virtue of their expression of BLT1, the receptor for LTB4. In the present study, we used a mast cell-CD8-dependent model of AHR to further define the role of BLT1 in CD8+ T cell-mediated AHR. C57BL/6+/+ and CD8-deficient (CD8-/-) mice were passively sensitized with anti-OVA IgE and exposed to OVA via the airways. Following passive sensitization and allergen exposure, C57BL/6+/+ mice developed altered airway function, whereas passively sensitized and allergen-exposed CD8-/- mice failed to do so. CD8-/- mice reconstituted with CD8+ T(EFF) developed AHR in response to challenge. In contrast, CD8-/- mice reconstituted with BLT1-deficient effector CD8+ T cells did not develop AHR. The induction of increased airway responsiveness following transfer of CD8+ T(EFF) or in wild-type mice could be blocked by administration of an LTB4 receptor antagonist confirming the role of BLT1 in CD8+ T cell-mediated AHR. Together, these data define the important role for mast cells and the LTB4-BLT1 pathway in the development of CD8+ T cell-mediated allergic responses in the lung.  相似文献   

19.
Murine CD4(+)CD25(+) regulatory cells have been reported to express latency-associated peptide (LAP) and TGF-beta on the surface after activation, and exert regulatory function by the membrane-bound TGF-beta in vitro. We have now found that a small population of CD4(+) T cells, both CD25(+) and CD25(-), can be stained with a goat anti-LAP polyclonal Ab without being stimulated. Virtually all these LAP(+) cells are also positive for thrombospondin, which has the ability to convert latent TGF-beta to the active form. In the CD4(+)CD45RB(high)-induced colitis model of SCID mice, regulatory activity was exhibited not only by CD25(+)LAP(+) and CD25(+)LAP(-) cells, but also by CD25(-)LAP(+) cells. CD4(+)CD25(-)LAP(+) T cells were part of the CD45RB(low) cell fraction. CD4(+)CD25(-)LAP(-)CD45RB(low) cells had minimal, if any, regulatory activity in the colitis model. The regulatory function of CD25(-)LAP(+) cells was abrogated in vivo by anti-TGF-beta mAb. These results identify a new TGF-beta-dependent regulatory CD4(+) T cell phenotype that is CD25(-) and LAP(+).  相似文献   

20.
Two distinct T-cell glycoforms of CD43 result from differentialglycosylation of a single gene product in vivo. The 115 kDaglycoform carries mainly tetrasaccharides and is a pan T-cellmarker, whereas the 130 kDa glycoform carries mainly hexasaccharidesand is associated with T-cell activation. CD43 has been shownto play a role both in enhancing and inhibiting cell adhesion;however, the function of the individual glycoforms is unknown.We have examined the distribution and regulation of the CD43glycoforms in a murine model of acute graft-versus-host disease(GVHD) using monoclonal antibodies (mAbs) S7 and 1B11 specificfor the 115 and 130 kDa CD43 glycoforms, respectively. An increasein T-lymphocyte CD43 130 kDa expression occurred during GVHDfrom day 4 onwards and coincided with splenomegaly and upregulationof the ß1-6GlcNAc transferase (C2GnT), the key enzymeresponsible for the addition of complex O-glycan branching toCD43. When T-lymphocyte subsets were examined for CD43 expression,we found that in GVHD, both CD43 glycoforms were upregulatedon CD4+ T cells. However, in CD8+ T cells, CD43 115 kDa wasdownregulated while CD43 130 kDa was dramatically upregulated,such that two distinct CD8+1B11+ T-cell subsets were observed.These data demonstrate differential expression of the CD43 glycoformsin both resting and activated CD4+ and CD8+ T cells, and suggestthat glycosylation differences between the CD43 glycoforms mayreflect participation in the different functions of these T-cellsubsets in immune disorders in vivo. activation CD43 glycosyltransferases graft-versushost disease T lymphocytes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号