首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated genetic variation in asexual polyploid members of the water flea Daphnia pulex complex from a set of 12 Bolivian high-altitude lakes. We used nuclear microsatellite markers to study genetic relationships among all encountered multilocus genotypes, and combined this with a phylogenetic approach using DNA sequence data of three mitochondrial genes. Analyses of mitochondrial gene sequence divergence showed the presence of three very distinct clades that likely represent cryptic undescribed species. Our phylogenetic results suggest that the Daphnia pulicaria group, a complex of predominantly North American species that has diversified rapidly since the Pleistocene, has its origin in South America, as specific tests of topology indicated that all three South American lineages are ancestral to the North American members of this species group. A comparison between variation of nuclear and mitochondrial markers revealed that closely related polyploid nuclear genotypes sometimes belonged to very divergent mitochondrial lineages, while distantly related nuclear genotypes often belonged to the same mitochondrial lineage. This discrepancy suggests that these South American water fleas originated through reciprocal hybridization between different endemic, sexually reproducing parental lineages. It is also likely that polyploidy of the investigated lineages resulted from this hybridization. Nevertheless, no putative diploid parental lineages were found in the studied region.  相似文献   

2.
The presence and extent of mitonuclear discordance in coexisting sexual and asexual lineages provides insight into 1) how and when asexual lineages emerged, and 2) the spatial and temporal scales at which the ecological and evolutionary processes influencing the evolution of sexual and asexual reproduction occur. Here, we used nuclear single‐nucleotide polymorphism (SNP) markers and a mitochondrial gene to characterize phylogeographic structure and the extent of mitonuclear discordance in Potamopyrgus antipodarum. This New Zealand freshwater snail is often used to study the evolution and maintenance of sex because obligately sexual and obligately asexual individuals often coexist. While our data indicate that sexual and asexual P. antipodarum sampled from the same lake population are often genetically similar, suggesting recent origin of these asexuals from sympatric sexual P. antipodarum, we also found significantly more population structure in sexuals vs. asexuals. This latter result suggests that some asexual lineages originated in other lakes and/or in the relatively distant past. When comparing mitochondrial and nuclear population genetic structure, we discovered that one mitochondrial haplotype (‘1A’) was rare in sexuals, but common and widespread in asexuals. Haplotype 1A frequency and nuclear genetic diversity were not associated, suggesting that the commonness of this haplotype cannot be attributed entirely to genetic drift and pointing instead to a role for selection.  相似文献   

3.
Asexuality is rare in animals in spite of its apparent advantage relative to sexual reproduction, indicating that it must be associated with profound costs [1-9]. One expectation is that reproductive advantages gained by new asexual lineages will be quickly eroded over time [3, 5-7]. Ancient asexual taxa that have evolved and adapted without sex would be "scandalous" exceptions to this rule, but it is often difficult to exclude the possibility that putative asexuals deploy some form of "cryptic" sex, or have abandoned sex more recently than estimated from divergence times to sexual relatives [10]. Here we provide evidence, from high intraspecific divergence of mitochondrial sequence and nuclear allele divergence patterns, that several independently derived Timema stick-insect lineages have persisted without recombination for more than a million generations. Nuclear alleles in the asexual lineages displayed significantly higher intraindividual divergences than in related sexual species. In addition, within two asexuals, nuclear allele phylogenies suggested the presence of two clades, with sequences from the same individual appearing in both clades. These data strongly support ancient asexuality in Timema and validate the genus as an exceptional opportunity to attack the question of how asexual reproduction can be maintained over long periods of evolutionary time.  相似文献   

4.
In asexual lineages, both synonymous and nonsynonymous sequence polymorphism may be reduced due to severe founder effects when asexual lineages originate. However, mildly deleterious (nonsynonymous) mutations may accumulate after asexual lineages are formed, because the efficiency of purifying selection is reduced even in the nonrecombining mitochondrial genome. Here we examine patterns of synonymous and nonsynonymous mitochondrial sequence polymorphism in asexual and sexual lineages of the freshwater snail Campeloma. Using clade-specific estimates, we found that synonymous sequence polymorphism was significantly reduced by 75% in asexuals relative to sexuals, whereas nonsynonymous sequence polymorphism did not differ significantly between sexuals and asexuals. Two asexual clades had high negative values for Tajima's D statistic. Coalescent simulations confirmed that various bottleneck scenarios can account for this result. We also used branch-specific estimates of the ratio of amino acid to silent substitutions, K(a)/K(s). Our study revealed that K(a)/K(s) ratios are six times higher in terminal branches of independent asexual lineages compared to sexuals. Coalescent-based reconstruction of gene networks for all sexual and asexual clades indicated that nonsynonymous mutations occurred at a higher frequency in recently derived asexual haplotypes. These findings suggest that patterns of synonymous and nonsynonymous nucleotide polymorphism in asexual snail lineages may be shaped by both severe founder effect and relaxed purifying selection.  相似文献   

5.
The relative advantages of sexual and parthenogenetic reproduction have long interested biologists and remain a central issue in ecological and evolutionary studies. Recent data on brine shrimp (Artemia) indicate that extensive ecological and genetic divergence occurs in an obligately parthenogenetic lineage. This challenges the belief that parthenogenetic lineages are evolutionary 'dead ends' and that extensive divergence is necessarily linked to recent recruitment from sexual ancestors. The molecular evidence suggests that parthenogenesis in Artemia is relatively ancient, with a single asexual lineage branching from an Old World sexual ancestor approximately five million years ago. Automictic recombination (which can occur in diploid but not polyploid parthenogenetic brine shrimp) appears to play a central role in the long-term maintenance of the parthenogenetic lineage.  相似文献   

6.
The marine clam genus Lasaea is unique among marine bivalves in that it contains both sexual and asexual lineages. We employed molecular tools to infer intrageneric relationships of geographically restricted sexual versus cosmopolitan asexual forms. Polymerase chain reaction primers were used to amplify and sequence homologous 624 nucleotide fragments of COIII from polyploid, asexual, direct-developing individuals representing northeastern Pacific, northeastern Atlantic, Mediterranean, southern Indian Ocean, and Australian populations. DNA sequences also were obtained from the two known diploid congeners, the Australian sexual, indirect developer, Lasaea australis, and an undescribed meiotic Australian direct developer. Estimated tree topologies did not support monophyly for polyploid asexual Lasaea lineages. A robust dichotomy was evident in all phylogenetic trees and each of the two main branches included one of the diploid meitoic Australian congeners. Lasaea australis clustered with two of the direct-developing, polyploid asexual haplotypes, one from Australia, the other from the northeastern Atlantic. Monophyly is supported for the diploid Australian direct-developing lineage together with the remaining polyploid asexual lineages from the northeastern Pacific, northeastern Atlantic, Mediterranean, and southern Indian Ocean. These results indicate that asexual Lasaea lineages are polyphyletic and may have resulted from multiple hybridization events. The high degree of genetic divergence of asexual lineages from co-clustering meiotic congeners (16%–22%) and among geographically restricted monophyletic clones (9%–11%) suggests that asexual Lasaea lineages may be exceptionally long lived.  相似文献   

7.
Abstract A sexual reproduction is thought to doom organisms to extinction due to mutation accumulation and parasite exploitation. Theoretical models suggest that parthenogens may escape the negative effects of conspecific and biological enemiecs through escape in space. Through intensive sequencing of a mitochondrial DNA (mtDNA) and a nuclear intron locus in sexual and pathenogenetic freshwater snails (Campelom), I examine three questionss: (1) Are sexual mtDNA lineage more restricted geographically than parthenogenetic mtDNA lineages? (2) Are independent pathenogenetic lineages shorter lived than sexual lineages? (3) Do pathenogens have higher intraindividual nuclear sequence diversity and form well‐differentiated monophyletic groups as expected under the Meselson effect? Geographic ranges of parthenogenetic lineages are significantly larger than geographic ranges of sexual lineages. Based on coalescence times under different deographic assumptions, asexual lineages are short lived, but there is variation in clonal ages. Although alternative explanations exit, these results suggest that asexual lineages may persist in the short term through dispersal, and that various constraints may cause geographic restriction of sexual lineagess. Both allotriploid and diploid Campleloma parthenogens have significantly higher allelic divergence within individuals, but show limited nuclear sequence divergence from sexual ancestors. In contrast to previous allozyme evidence for nonhybrid origins of diploid Campeloma parthenogens, cryptic hybridization may account for elevated heterozygosity.  相似文献   

8.
C. W. Birky-Jr. 《Genetics》1996,144(1):427-437
Little attention has been paid to the consequences of long-term asexual reproduction for sequence evolution in diploid or polyploid eukaryotic organisms. Some elementary theory shows that the amount of neutral sequence divergence between two alleles of a protein-coding gene in an asexual individual will be greater than that in a sexual species by a factor of 2tu, where t is the number of generations since sexual reproduction was lost and u is the mutation rate per generation in the asexual lineage. Phylogenetic trees based on only one allele from each of two or more species will show incorrect divergence times and, more often than not, incorrect topologies. This allele sequence divergence can be stopped temporarily by mitotic gene conversion, mitotic crossing-over, or ploidy reduction. If these convergence events are rare, ancient asexual lineages can be recognized by their high allele sequence divergence. At intermediate frequencies of convergence events, it will be impossible to reconstruct the correct phylogeny of an asexual clade from the sequences of protein coding genes. Convergence may be limited by allele sequence divergence and heterozygous chromosomal rearrangements which reduce the homology needed for recombination and result in aneuploidy after crossing-over or ploidy cycles.  相似文献   

9.
Transitions from sexual to asexual reproduction are often coupled with elevations in ploidy. As a consequence, the importance of ploidy per se for the maintenance and spread of asexual populations is unclear. To examine the effects of ploidy and asexual reproduction as independent determinants of the success of asexual lineages, we sampled diploid sexual, diploid asexual, and triploid asexual Eucypris virens ostracods across a European wide range. Applying nuclear and mitochondrial markers, we found that E. virens consists of genetically highly differentiated diploid sexual populations, to the extent that these sexual clades could be considered as cryptic species. All sexual populations were found in southern Europe and North Africa and we found that both diploid asexual and triploid asexual lineages have originated multiple times from several sexual lineages. Therefore, the asexual lineages show a wide variety of genetic backgrounds and very strong population genetic structure across the wide geographic range. Finally, we found that triploid, but not diploid, asexual clones dominate habitats in northern Europe. The limited distribution of diploid asexual lineages, despite their shared ancestry with triploid asexual lineages, strongly suggests that the wider geographic distribution of triploids is due to elevated ploidy rather than to asexuality.  相似文献   

10.
Cyclical parthenogens, including aphids, are attractive models for comparing the genetic outcomes of sexual and asexual reproduction, which determine their respective evolutionary advantages. In this study, we examined how reproductive mode shapes genetic structure of sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) populations of the aphid Rhopalosiphum padi by comparing microsatellite and allozyme data sets. Allozymes showed little polymorphism, confirming earlier studies with these markers. In contrast, microsatellite loci were highly polymorphic and showed patterns very discordant from allozyme loci. In particular, microsatellites revealed strong heterozygote excess in asexual populations, whereas allozymes showed heterozygote deficits. Various hypotheses are explored that could account for the conflicting results of these two types of genetic markers. A strong differentiation between reproductive modes was found with both types of markers. Microsatellites indicated that sexual populations have high allelic polymorphism and heterozygote deficits (possibly because of population subdivision, inbreeding or selection). Little geographical differentiation was found among sexual populations confirming the large dispersal ability of this aphid. In contrast, asexual populations showed less allelic polymorphism but high heterozygosity at most loci. Two alternative hypotheses are proposed to explain this heterozygosity excess: allele sequence divergence during long-term asexuality or hybrid origin of asexual lineages. Clonal diversity of asexual lineages of R. padi was substantial suggesting that they could have frozen genetic diversity from the pool of sexual lineages. Several widespread asexual genotypes were found to persist through time, as already seen in other aphid species, a feature seemingly consistent with the general-purpose genotype hypothesis.  相似文献   

11.
The widespread occurrence of sex is one of the most elusive problems in evolutionary biology. Theory predicts that asexual lineages can be driven to extinction by uncontrolled proliferation of vertically transmitted transposable elements (TEs), which accumulate because of the inefficiency of purifying selection in the absence of sex and recombination. To test this prediction, we compared genome-wide TE load between a sexual lineage of the parasitoid wasp Leptopilina clavipes and a lineage of the same species that is rendered asexual by Wolbachia-induced parthenogenesis. We obtained draft genome sequences at 15-20× coverage of both the sexual and the asexual lineages using next-generation sequencing. We identified transposons of most major classes in both lineages. Quantification of TE abundance using coverage depth showed that copy numbers in the asexual lineage exceeded those in the sexual lineage for DNA transposons, but not LTR and LINE-like elements. However, one or a small number of gypsy-like LTR elements exhibited a fourfold higher coverage in the asexual lineage. Quantitative PCR showed that high loads of this gypsy-like TE were characteristic for 11 genetically distinct asexual wasp lineages when compared to sexual lineages. We found no evidence for an overall increase in copy number for all TE types in asexuals as predicted by theory. Instead, we suggest that the expansions of specific TEs are best explained as side effects of (epi)genetic manipulations of the host genome by Wolbachia. Asexuality is achieved in a myriad of ways in nature, many of which could similarly result in TE proliferation.  相似文献   

12.
The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within‐lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra‐ and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations.  相似文献   

13.
We present the results of a computer simulation model in which a sexual population produces an asexual mutant. We estimate the probability that the new asexual lineage will go extinct. We find that whenever the asexual lineage does not go extinct the sexual population is out-competed, and only asexual individuals remain after a sufficiently long period of time has elapsed. We call this type of outcome an asexual takeover. Our results suggest that, given repeated mutations to asexuality, asexual takeover is likely in an unstructured environment. However, if the environment is subdivided into demes that are connected by migration, then asexual takeover becomes less likely. The probability of asexual takeover declines towards zero as the number of demes increases and as the rate of migration decreases. The reason for this is that asexuality leads to a greater loss of fitness due to mutation and genetic drift, in comparison to what occurs under sexual reproduction. Population subdivision slows the spread of asexual lineages, which allows more time for the genetic degeneration caused by asexuality to take place.  相似文献   

14.
Patterns of diversity reflect the balance between speciation and extinction over time. Here we estimate net diversification rates for samples of sexual and asexual rotifers using phylogenetic reconstructions from sequence data of one mtDNA locus, cytochrome oxidase c subunit I. All four clades of bdelloid rotifers, obligate asexuals, had higher number of species per clade and significantly higher accumulation of diversification events towards the root of the trees than the four clades of their sexual relatives, the monogonont rotifers. Such differences were robust to confounding effects of number of analysed sequences, haplotype diversity, overall genetic divergence, age of the clades or geographic coverage. Our results support the idea that differences in diversification rates could thus be ascribed to different mechanisms of speciation, with ecological speciation as the most plausible mechanism for asexual organisms.  相似文献   

15.
Three drainage systems in British Columbia, Canada, contain divergent parapatric lake-stream pairs of threespine sticklebacks (Gasterosteus aculeatus): Drizzle and Mayer Lakes on Graham Island, Queen Charlotte Islands, and Misty Lake on northeastern Vancouver Island. Ecological and morphological differences between members of all three lake-stream pairs are strikingly similar; lake fish are melanistic and slim bodied with smaller mouths and more gill rakers than the mottled-brown and robust-bodied stream sticklebacks. We estimated the level of genetic divergence between lake and stream fish in Misty Lake and tested hypotheses of single versus multiple origins of the pairs by assaying mitochondrial DNA (mtDNA) restriction site variation in samples from the three lake systems. MtDNA analysis revealed the existence of two highly divergent lineages differing by 2.7% in sequence. One lineage predominated in Misty stream fish (73%), whereas the other lineage predominated in Misty Lake samples (96%). Comparable forms (lake or stream) in the different lakes did not cluster together in terms of mtDNA nucleotide divergence, suggesting that the pairs have had independent origins. We concluded that: (1) divergent mtDNA lineages in North Pacific sticklebacks stem from historical isolation in the two major glacial refugia proposed for the North Pacific (Beringia and Cascadia); (2) the stream and lake pair in Misty Lake are distinct gene pools; (3) the divergence between parapatric lake and stream Gasterosteus represents parallel evolution having occurred at least twice in the North Pacific; and (4) different scales of evolutionary divergence exist in North Pacific Gasterosteus, that is, a relatively ancient divergence of mtDNA clades as well as recent (i.e., postglacial) divergence of ecotypes within major clades.  相似文献   

16.
Cyclically parthenogenetic organisms may have facultative asexual counterparts. Such organisms, including aphids, are therefore interesting models for the study of ecological and genetic interactions between lineages differing in reproductive mode. Earlier studies on aphids have revealed major differences in the genetic outcomes of populations that are possibly resulting mostly either from sexual or from asexual reproduction. Besides, notable gene flow between sexual and asexual derivatives has been suspected, which could lead to the emergence of new asexual lineages. The present study examines the interplay between these lineages and is based on analyses of population structure of individuals that may contribute to the pool of sexual reproductive forms in the host alternating aphid Rhopalosiphum padi. Using a Bayesian assignment method, we first show that the sexual forms of R. padi on mating sites encompass two genetically distinct clusters of individuals in the western part of France. The first cluster included unique genotypes of sexual lineages, while the second cluster included facultatively asexual lineages in numerous copies, the reproductive mode of the two clusters being confirmed by reference clones. Sexual reproductive forms produced by sexual and facultatively asexual lineages are thus admixed at mating sites which gives a large opportunity for the two clusters to mate with each other. Nevertheless, this study also highlights, as previously demonstrated, that the two clusters retained high genetic differentiation. Possible explanations for the inferred limited genetic exchanges are advanced in the discussion, but further dedicated investigations are required to solve this paradox.  相似文献   

17.
Parthenogenetic lineages that arise in a hermaphroditic, sexual population will inherit the male function from their sexual progenitors. Natural selection then acts to reduce male allocation of the parthenogens, freeing resources presumably for the female function. Depending on age and the available genetic variation, one therefore expects to find reduced male allocation in naturally occurring parthenogenetic lineages. We investigated the allocation to sperm production in the hermaphroditic flatworm Dugesia polychroa in three lakes containing a sexual (S), a (pseudogamous) parthenogenetic (P), and a mixed sexual-parthenogenetic population (M). Parthenogenetic lineages from M were assumed to be relatively young due to recurrent origins from the coexisting sexuals, whereas those from P were assumed to be older on biogeographical grounds. As predicted, we found drastically reduced sperm production in parthenogens compared to sexuals, even in the parthenogenetic lineages from M, which may be younger. M parthenogens did not have more testes, but produced more sperm than individuals from the purely parthenogenetic population (P). However, the latter result could not be reproduced with laboratory-raised animals and therefore may be a consequence of different ecological conditions in the different lakes, for example, differences in mating rates. To study the behavioral component of male allocation, copulation frequencies were recorded for sexuals from M and for parthenogens from P. Compared to the drastic reduction in sperm production, copulation frequency was less reduced in parthenogens. This may be a consequence of allosperm limitation in pseudogamous parthenogenetic populations.  相似文献   

18.
Understanding the mode of origin of asexuality is central to ongoing debates concerning the evolution and maintenance of sexual reproduction in eukaryotes. This is because it has profound consequences for patterns of genetic diversity and ecological adaptability of asexual lineages, hence on the outcome of competition with sexual relatives both in short and longer terms. Among the possible routes to asexuality, hybridization is a very common mechanism in animals and plants. Aphids present frequent transitions from their ancestral reproductive mode (cyclical parthenogenesis) to permanent asexuality, but the mode of origin of asexual lineages is generally not known because it has never been thoroughly investigated with appropriate molecular tools. Rhopalosiphum padi is an aphid species with coexisting sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) lineages that are genetically distinct. Previous studies have shown that asexual lineages of R. padi are heterozygous at most nuclear loci, suggesting either that they have undergone long-term asexuality (under which heterozygosity tends to increase) or that they have hybrid origins. To discriminate between these alternatives, we conducted an extensive molecular survey combining the sequence analysis of alleles of two nuclear DNA markers and mitochondrial DNA haplotypes in sexual and asexual lineages of R. padi. Both nuclear and cytoplasmic markers clearly showed that many asexual lineages have hybrid origins, the first such demonstration in aphids. Our results also indicated that asexuals result from multiple events of hybridization between R. padi and an unknown sibling species, and are of recent origin (contradicting previous estimates that asexual R. padi lineages were of moderate longevity). This study constitutes another example that putatively ancient asexual lineages are actually of much more recent origin than previously thought. It also presents a robust approach for testing whether hybrid origin of asexuality is also a common phenomenon in aphids.  相似文献   

19.
Quantifying introgression between sexual species and polyploid lineages traditionally thought to be asexual is an important step in understanding what drives the longevity of putatively asexual groups. Here, we capitalize on three recent innovations—ultraconserved element (UCE) sequencing, bioinformatic techniques for identifying genome‐specific variation in polyploids, and model‐based methods for evaluating historical gene flow—to measure the extent and tempo of introgression over the evolutionary history of an allopolyploid lineage of all‐female salamanders and two ancestral sexual species. Our analyses support a scenario in which the genomes sampled in unisexual salamanders last shared a common ancestor with genomes in their parental species ~3.4 million years ago, followed by a period of divergence between homologous genomes. Recently, secondary introgression has occurred at different times with each sexual species during the last 500,000 years. Sustained introgression of sexual genomes into the unisexual lineage is the defining characteristic of their reproductive mode, but this study provides the first evidence that unisexual genomes have undergone long periods of divergence without introgression. Unlike other sperm‐dependent taxa in which introgression is rare, the alternating periods of divergence and introgression between unisexual salamanders and their sexual relatives could explain why these salamanders are among the oldest described unisexual animals.  相似文献   

20.
To examine whether demographic and life-history traits are correlated with genetic structure, we contrasted mtDNA lineages of individual humpback whales (Megaptera novaeangliae) with sighting and reproductive histories of female humpback whales between 1979 and 1995. Maternal lineage haplotypes were obtained for 323 whales, either from direct sequencing of the mtDNA control region (n = 159) or inferred from known relationships along matrilines from the sequenced sample of individuals (n = 164). Sequence variation in the 550 bp of the control region defined a total of 19 maternal lineage haplotypes that formed two main clades. Fecundity increased significantly over the study period among females of several lineages among the two clades. Individual maternal lineages and other clades were characterized by significant variation in fecundity. The detected heterogeneity of reproductive success has the potential to substantially affect the frequency and distribution of maternal lineages found in this population over time. There were significant yearly effects on adult resighting rates and calf survivorship based on examination of sighting histories with varying capture-recapture probability models. These results indicate that population structure can be influenced by interactions or associations between reproductive success, genetic structure, and environmental factors in a natural population of long-lived mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号