首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A large number of natural and artificial ribozymes have been isolated since the demonstration of the catalytic potential of RNA, with the majority of these catalyzing phosphate hydrolysis or transesterification reactions. Here, we describe and characterize an extremely short ribozyme that catalyzes the positionally specific transesterification that produces a 2′–3′ phosphodiester bond between itself and a branch substrate provided in trans, cleaving itself internally in the process. Although this ribozyme was originally derived from constructs based on snRNAs, its minimal catalytic motif contains essentially no snRNA sequence and the reaction it catalyzes is not directly related to either step of pre-mRNA splicing. Our data have implications for the intrinsic reactivity of the large amount of RNA sequence space known to be transcribed in nature and for the validity and utility of the use of protein-free systems to study pre-mRNA splicing.  相似文献   

2.
3.
Recently, we synthesized pyrimidine derivatives of the 2′-O,4′-C-methylenoxymethylene-bridged nucleic-acid (2′,4′-BNACOC) monomer, the sugar conformation of which is restricted in N-type conformation by a seven-membered bridged structure. Oligonucleotides (BNACOC) containing this monomer show high affinity with complementary single-stranded RNA and significant resistance to nuclease degradation. Here, BNACOC consisting of 2′,4′-BNACOC monomers bearing all four bases, namely thymine, 5-methylcytosine, adenine and guanine was efficiently synthesized and properties of duplexes containing the 2′,4′-BNACOC monomers were investigated by UV melting experiments and circular dichroism (CD) spectroscopy. The UV melting curve analyses showed that the BNACOC/BNACOC duplex possessed excellent thermal stability and that the BNACOC increased thermal stability with a complementary RNA strand. On the other hand, BNACOC/DNA heteroduplexes showed almost the same thermal stability as RNA/DNA heteroduplexes. Furthermore, mismatched sequence studies showed that BNACOC generally improved the sequence selectivity with Watson–Crick base-pairing compared to the corresponding natural DNA and RNA. A CD spectroscopic analysis indicated that the BNACOC formed duplexes with complementary DNA and RNA in a manner similar to natural RNA.  相似文献   

4.
A new procedure has been developed for the synthesis of 3′-amino-3′-deoxyribonucleosides of adenine, cytosine and uracil by condensing the trimethylsilylated bases with peracylated 3-azido-3-deoxyribose derivative. The azido group could subsequently be reduced to amino. The 5′-phosphates of these nucleosides have been prepared and the analogues have been tested for their ability to stimulate the ribosome-catalyzed reaction of 3′(2′)-O-(N-formylmethionyl)adenosine 5′-phosphate with phenylalanyl-tRNA.  相似文献   

5.
Biphenanthrene compound, 4, 8, 4′, 8′-tetramethoxy (1, 1′-biphenanthrene)—2, 7, 2′, 7′-tetrol (LF05), recently isolated from fibrous roots of Bletilla striata, exhibits antibacterial activity against several Gram-positive bacteria. In this study, we investigated the antibacterial properties, potential mode of action and cytotoxicity. Minimum inhibitory concentrations (MICs) tests showed LF05 was active against all tested Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA) and staphylococcal clinical isolates. Minimum bactericidal concentration (MBC) tests demonstrated LF05 was bactericidal against S. aureus ATCC 29213 and Bacillus subtilis 168 whereas bacteriostatic against S. aureus ATCC 43300, WX 0002, and other strains of S. aureus. Time-kill assays further confirmed these observations. The flow cytometric assay indicated that LF05 damaged the cell membrane of S. aureus ATCC 29213 and B. subtilis 168. Consistent with this finding, 4 × MIC of LF05 caused release of ATP in B. subtilis 168 within 10 min. Checkerboard test demonstrated LF05 exhibited additive effect when combined with vancomycin, erythromycin and berberine. The addition of rat plasma or bovine serum albumin to bacterial cultures caused significantly loss in antibacterial activity of LF05. Interestingly, LF05 was highly toxic to several tumor cells. Results of these studies indicate that LF05 is bactericidal against some Gram-positive bacteria and acts as a membrane structure disruptor. The application of biphenanthrene in the treatment of S. aureus infection, especially local infection, deserves further study.  相似文献   

6.
Data are presented demonstrating that the presence in vivo of adenosine 3',5'-monophosphate (3',5'-AMP) causes a rapid depletion of glycogen storage material in the cellular slime mold. The effect of adenosine 5'-monophosphate (5'-AMP) is twofold, stimulating both glycogen degradation and synthesis. In pseudoplasmodia, cell-free extracts appear to contain at least two species of glycogen phosphorylase, one of which is severely inhibited by glucose-1-phosphate and another which is only partially inhibited by this hexose-phosphate. In some cases, 5'-AMP partially overcomes the inhibition by glucose-1-phosphate. Data presented here also indicate the existence of two forms of glycogen synthetase, the total activity of which does not change during 10 hr of differentiation from aggregation to culmination. During this period there is a quantitative conversion of glucose-6-phosphate-independent enzyme activity to glucose-6-phosphate-dependent activity. It is suggested that one effect of 3',5'-AMP is closely related to enzymatic processes involved in the rapid conversion of glycogen to cell wall material and other end products accumulating during sorocarp construction.  相似文献   

7.
We recently reported the synthesis of 2′-fluorinated Northern-methanocarbacyclic (2′-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2′-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2′-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5′ phosphate, suggesting that the 2′-F-NMC is a poor substrate for 5′ kinases. In mice, the 2′-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2′-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5′-phosphate mimic 5′-(E)-vinylphosphonate was attached to the 2′-F-NMC at the position 1 of the guide strand, activity was considerably reduced. The steric constraints of the bicyclic 2′-F-NMC may impair formation of hydrogen-bonding interactions between the vinylphosphonate and the MID domain of Ago2. Molecular modeling studies explain the position- and conformation-dependent RNAi-mediated gene silencing activity of 2′-F-NMC. Finally, the 5′-triphosphate of 2′-F-NMC is not a substrate for mitochondrial RNA and DNA polymerases, indicating that metabolites should not be toxic.  相似文献   

8.
The addition of 5',5',5'-trifluoroleucine (fluoroleucine) to leucine auxotrophs of Salmonella typhimurium permitted protein but not ribonucleic acid (RNA) synthesis to continue after leucine depletion. The uncoupling of the formation of these macromolecules by fluoroleucine was apparent if RNA and protein synthesis was measured either by the uptake of radioactive precursors or by direct chemical determinations. The analogue did not appear to be an inhibitor of RNA formation, since it was as effective as leucine in permitting RNA synthesis in a leucine auxotroph upon the addition of small amounts of chloramphenicol. In contrast to these data, fluoroleucine allowed continued protein and RNA formation in a leucine auxotroph of Escherichia coli strain W. In addition, contrary to the results obtained with S. typhimurium, the analogue replaced leucine for repression of the leucine bio-synthetic enzymes as well as the isoleucine-valine enzymes. We propose that these ambivalent effects of fluoroleucine on repression and RNA and protein synthesis in the two strains are due to differences in the ability of the analogue to attach to the various species of leucine transfer RNA.  相似文献   

9.
Oligodeoxynucleotides (ODNs) containing 5-formyl-2′-deoxycytidine (fC) were synthesized by the phosphoramidite method and subsequent oxidation with sodium periodate. The stabilities of duplexes containing A, G, C or T opposite fC were studied by thermal denaturation. It was found that fC:A, fC:C or fC:T base pairs significantly reduce the thermal stabilities of duplexes. Next, single nucleotide insertion reactions were performed using ODNs containing fC as templates and the Klenow fragment of Escherichia coli DNA polymerase I. It was found that: (i) insertion of dGMP opposite fC appears to be less efficient relative to insertion opposite 5-methyl-2′-deoxycytidine (mC); (ii) dAMP is misincorporated more frequently opposite fC than mC, although the frequency of misincorporation seems to be dependent on the sequence; (iii) TMP is misincorporated more frequently opposite fC than mC. These results suggest that fC may induce the transition mutation C·G→T·A and the transversion mutation C·G→A·T during DNA synthesis.  相似文献   

10.
The rate and extent of stereoselective reduction of 1,3-dioxo-2-methyl-2-(3′-oxo-6′-carbomethoxyhexyl)-cyclopentane to form the 1β-hydroxy-2β-methyl isomer by cultures of Schizosaccharomyces pombe ATCC 2476 was dramatically increased by addition to the fermentation of certain α,β-unsaturated ketones and allyl alcohol.  相似文献   

11.
12.
13.
Human Ape2 protein has 3′ phosphodiesterase activity for processing 3′-damaged DNA termini, 3′–5′ exonuclease activity that supports removal of mismatched nucleotides from the 3′-end of DNA, and a somewhat weak AP-endonuclease activity. However, very little is known about the role of Ape2 in DNA repair processes. Here, we examine the effect of interaction of Ape2 with proliferating cell nuclear antigen (PCNA) on its enzymatic activities and on targeting Ape2 to oxidative DNA lesions. We show that PCNA strongly stimulates the 3′–5′ exonuclease and 3′ phosphodiesterase activities of Ape2, but has no effect on its AP-endonuclease activity. Moreover, we find that upon hydrogen-peroxide treatment Ape2 redistributes to nuclear foci where it colocalizes with PCNA. In concert with these results, we provide biochemical evidence that Ape2 can reduce the mutagenic consequences of attack by reactive oxygen species not only by repairing 3′-damaged termini but also by removing 3′-end adenine opposite from 8-oxoG. Based on these findings we suggest the involvement of Ape2 in repair of oxidative DNA damage and PCNA-dependent repair synthesis.  相似文献   

14.
The carotenoid 4′-hydroxyechinenone (4′-hydroxy-β, β-carotene-4-one) was isolated from Micrococcus roseus. It is proposed as an intermediate between echinenone and canthaxanthin.  相似文献   

15.
The exosome, an evolutionarily conserved complex of multiple 3′→5′ exoribonucleases, is responsible for a variety of RNA processing and degradation events in eukaryotes. In this report Arabidopsis thaliana AtRrp4p is shown to be an active 3′→5′ exonuclease that requires a free 3′-hydroxyl and degrades RNA hydrolytically and distributively, releasing nucleoside 5′-monophosphate products. AtRrp4p behaves as an ~500 kDa species during sedimentation through a 10–30% glycerol gradient, co-migrating with AtRrp41p, another exosome subunit, and it interacts in vitro with AtRrp41p, suggesting that it is also present in the plant cell as a subunit of the exosome. We found that, in addition to a previously reported S1-type RNA-binding domain, members of the Rrp4p family of proteins contain a KH-type RNA-binding domain in the C-terminal half and show that either domain alone can bind RNA. However, only the full-length protein is capable of degrading RNA and interacting with AtRrp41p.  相似文献   

16.
17.
2′,3′-Dideoxyadenosine was previously shown to be lethal to Escherichia coli and to inhibit deoxyribonucleic acid (DNA) synthesis irreversibly in this organism. It was also shown that triphosphate of this analogue terminates DNA chains in an in vitro system. Data presented here show that the nucleoside is relatively insensitive to E. coli adenosine deaminase and is converted intracellularly into the dideoxynucleotide, including the triphosphate. Thymine nucleotide pools were not reduced in inhibited bacteria, nor did preformed DNA break down. Some adenine was liberated from the dideoxyadenosine on incubation, and the latter was incorporated into ribonucleic acid. Nevertheless, about 4,000 molecules of the dideoxynucleoside were incorporated into DNA per cell. The dideoxynucleotide occurred in DNA chains in a terminal position, liberated selectively by venom phosphodiesterase. The possible nature of the lethal event is discussed.  相似文献   

18.
1. 5,6-Monoepoxy-beta-carotene and 5,6:5',6'-diepoxy-beta-carotene were partially converted into the furanoid forms during passage through the rat stomach. 2. The monoepoxide was converted into vitamin A in the small intestine and showed a biological potency 21% of that of beta-carotene. Neither beta-carotene nor 5,6-monoepoxyvitamin A was formed. 3. Intraperitoneal administration of the monoepoxide led to the accumulation of the unchanged compound in the liver and other tissues. 4. The diepoxide gave no beta-carotene or vitamin A or 5,6-monoepoxyvitamin A when given orally and showed no biological potency. 5. The significance of these results with special reference to the mechanism of formation of vitamin A from beta-carotene is discussed.  相似文献   

19.
20.
Nerve growth factor (NGF) is critical for the differentiation and maintenance of neurons in the peripheral and central nervous system. Sustained autophosphorylation of the TrkA receptor tyrosine kinase and long-lasting activation of downstream kinase cascades are hallmarks of NGF signaling, yet our knowledge of the molecular mechanisms underlying prolonged TrkA activity is incomplete. Protein phosphatase 2A (PP2A) is a heterotrimeric Ser/Thr phosphatase composed of a scaffolding, catalytic, and regulatory subunit (B, B′, and B" gene families). Here, we employ a combination of pharmacological inhibitors, regulatory subunit overexpression, PP2A scaffold subunit exchange, and RNA interference to show that PP2A containing B′ family regulatory subunits participates in sustained NGF signaling in PC12 cells. Specifically, two neuron-enriched regulatory subunits, B′β and B′δ, recruit PP2A into a complex with TrkA to dephosphorylate the NGF receptor on Ser/Thr residues and to potentiate its intrinsic Tyr kinase activity. Acting at the receptor level, PP2A/ B′β and B′δ enhance NGF (but not epidermal growth factor or fibroblast growth factor) signaling through the Akt and Ras-mitogen-activated protein kinase cascades and promote neuritogenesis and differentiation of PC12 cells. Thus, select PP2A heterotrimers oppose desensitization of the TrkA receptor tyrosine kinase, perhaps through dephosphorylation of inhibitory Ser/Thr phosphorylation sites on the receptor itself, to maintain neurotrophin-mediated developmental and survival signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号