共查询到20条相似文献,搜索用时 0 毫秒
1.
Many gram-negative bacteria share a closely related mechanism for secretion of virulence proteins. This complex machine, the type III secretion system, secretes virulence proteins in response to sensing the presence of target mammalian cells. We have found that recombinant human lactoferrin impairs the function of this system in two model organisms: Shigella and Enteropathogenic E. coli (EPEC). In the case of Shigella, there is loss and degradation of two proteins secreted by the type III mechanism, invasion plasmid antigens B and C (IpaB and IpaC); these proteins normally form a complex that causes Shigella to be taken up by host mammalian cells. In the case of EPEC, lactoferrin causes loss and degradation of E. coli secreted proteins A, B and D (EspABD) particularly EspB. These proteins are components of type III machinery and are known to be key elements of EPEC pathogenesis. Studies using purified EspB demonstrated that lactoferrin has a direct proteolytic effect on EspB that can be prevented by serine protease inhibitors. A synthetic peptide of the N-terminal 33 amino acids of lactoferrin caused loss of cell associated EspB but, unlike the whole lactoferrin molecule, did not caused degradation of EspB. Thus, in both model systems, brief exposure to lactoferrin causes loss and degradation of type III secretion system virulence proteins. 相似文献
2.
3.
4.
Lawton DG Longstaff C Wallace BA Hill J Leary SE Titball RW Brown KA 《The Journal of biological chemistry》2002,277(41):38714-38722
The type III secretion system is used by pathogenic Yersinia to translocate virulence factors into the host cell. A key component is the multifunctional LcrV protein, which is present on the bacterial surface prior to host cell contact and up-regulates translocation by blocking the repressive action of the LcrG protein on the cytosolic side of the secretion apparatus. The functions of LcrV are proposed to involve self-interactions (multimerization) and interactions with other proteins including LcrG. Coiled-coil motifs predicted to be present are thought to play a role in mediating these protein-protein interactions. We have purified recombinant LcrV, LcrG, and site-directed mutants of LcrV and demonstrated the structural integrity of these proteins using circular dichroism spectroscopy. We show that LcrV interacts both with itself and with LcrG and have obtained micromolar and nanomolar affinities for these interactions, respectively. The effects of LcrV mutations upon LcrG binding suggest that coiled-coil interactions indeed play a significant role in complex formation. In addition, comparisons of secretion patterns of effector proteins in Yersinia, arising from wild type and mutants of LcrV, support the proposed role of LcrG in titration of LcrV in vivo but also suggest that other factors may be involved. 相似文献
5.
Coiled-coil domains in proteins secreted by type III secretion systems 总被引:12,自引:1,他引:11
6.
The pathogenic potential of many Gram-negative bacteria is indicated by the possession of a specialized type III secretion system that is used to deliver virulence effector proteins directly into the cellular environment of the eukaryotic host. Extracellular assemblies of secreted proteins contrive a physical link between the pathogen and host cytosol and enable the translocated effectors to bypass the bacterial and host membranes in a single step. Subsequent interactions of some effector proteins with host cytoskeletal and signalling proteins result in modulation of the cytoskeletal architecture of the aggressed cell and facilitate entry, survival and dissemination of the pathogen. Although the secreted components of type III secretion systems are diverse, many are predicted to share a common coiled-coil structural feature. Coiled-coils are ubiquitous and highly versatile assembly motifs found in a wide range of structural and regulatory proteins. The prevalence of these domains in secreted virulence effector proteins suggests a fundamental contribution to multiple aspects of their function, and evidence accumulating from functional studies suggests an intrinsic involvement of coiled-coils in subunit assembly, translocation and flexible interactions with multiple bacterial and host proteins. The known functional flexibility that coiled-coil domains confer upon proteins provides insights into some of the pathogenic mechanisms used during interaction with the host. 相似文献
7.
8.
9.
10.
11.
Michael L Barta Lingling Zhang Wendy L Picking Brian V Geisbrecht 《BMC structural biology》2010,10(1):21
Background
Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg) C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators. 相似文献12.
Barta ML Dickenson NE Patil M Keightley A Wyckoff GJ Picking WD Picking WL Geisbrecht BV 《Journal of molecular biology》2012,417(5):395-405
Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SSs) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) that is responsible for over one million deaths per year. The Shigella type III secretion apparatus is composed of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 Å and 2.8 Å limiting resolution, respectively. These newly identified domains are composed of extended-length (114 Å in IpaB and 71 Å in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably, colicin Ia. This suggests that these mechanistically separate and functionally distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events. 相似文献
13.
Pallen MJ Bailey CM Beatson SA 《Protein science : a publication of the Protein Society》2006,15(4):935-941
Bacterial type III secretion drives flagellar biosynthesis and mediates bacterial-eukaryotic interactions. Type III secretion is driven by an ATPase that is homologous to the catalytic subunits of proton-translocating ATPases, such as the F(o)F(1) ATPase. Here we use PSI-BLAST searches to show that some noncalatytic components are also conserved between type III secretion systems and proton-translocating ATPases. In particular, we show that the FliH/YscL-like proteins and the E subunits of vacuolar ATPases represent fusions of domains homologous to second-stalk components of the F(o)F(1) ATPase (the b and delta subunits). 相似文献
14.
Bacteria use type IV secretion systems for two fundamental objectives related to pathogenesis--genetic exchange and the delivery of effector molecules to eukaryotic target cells. Whereas gene acquisition is an important adaptive mechanism that enables pathogens to cope with a changing environment during invasion of the host, interactions between effector and host molecules can suppress defence mechanisms, facilitate intracellular growth and even induce the synthesis of nutrients that are beneficial to bacterial colonization. Rapid progress has been made towards defining the structures and functions of type IV secretion machines, identifying the effector molecules, and elucidating the mechanisms by which the translocated effectors subvert eukaryotic cellular processes during infection. 相似文献
15.
Translation/secretion coupling by type III secretion systems 总被引:20,自引:0,他引:20
16.
Aizawa SI 《FEMS microbiology letters》2001,202(2):157-164
Certain classes of pathogenic bacteria secrete virulence proteins in a Sec-independent manner, by a mechanism known as type III secretion. The main body of the export apparatus specific for virulence proteins is identified as a needle complex, which has a similar structural organization to flagella. The two structures share several proteins with highly homologous amino acid sequences. Even where the sequence identity is low among flagellar proteins from various species, the physico-chemical properties of each protein remain homologous. Therefore, by comparing the physico-chemical properties of unidentified proteins, it is possible to find homologs among type III secretion systems. 相似文献
17.
Molecular secrets of bacterial type III effector proteins 总被引:9,自引:0,他引:9
18.
Bacterial type IV secretion systems (T4SSs) are a versatile group of nanomachines that can horizontally transfer DNA through conjugation and deliver effector proteins into a wide range of target cells. The components of T4SSs in gram-negative bacteria are organized into several large subassemblies: an inner membrane complex, an outer membrane core complex, and, in some species, an extracellular pilus. Cryo-electron tomography has been used to define the structures of T4SSs in intact bacteria, and high-resolution structural models are now available for isolated core complexes from conjugation systems, the Xanthomonas citri T4SS, the Helicobacter pylori Cag T4SS, and the Legionella pneumophila Dot/Icm T4SS. In this review, we compare the molecular architectures of these T4SSs, focusing especially on the structures of core complexes. We discuss structural features that are shared by multiple T4SSs as well as evolutionary strategies used for T4SS diversification. Finally, we discuss how structural variations among T4SSs may confer specialized functional properties. 相似文献
19.
20.
Aeromonas salmonicida subsp. salmonicida, the etiological agent of furunculosis, is an important fish pathogen. We have screened this bacterium with a broad-host-range probe directed against yscV, the gene that encodes the archetype of a highly conserved family of inner membrane proteins found in every known type III secretion system. This has led to the identification of seven open reading frames that encode homologues to proteins functioning within the type III secretion systems of Yersinia species. Six of these proteins are encoded by genes comprising a virA operon. The A. salmonicida subsp. salmonicida yscV homologue, ascV, was inactivated by marker replacement mutagenesis and used to generate an isogenic ascV mutant. Comparison of the extracellular protein profiles from the ascV mutant and the wild-type strain indicates that A. salmonicida subsp. salmonicida secretes proteins via a type III secretion system. The recently identified ADP-ribosylating toxin AexT was identified as one such protein. Finally, we have compared the toxicities of the wild-type A. salmonicida subsp. salmonicida strain and the ascV mutant against RTG-2 rainbow trout gonad cells. While infection with the wild-type strain results in significant morphological changes, including cell rounding, infection with the ascV mutant has no toxic effect, indicating that the type III secretion system we have identified plays an important role in the virulence of this pathogen. 相似文献