首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work has shown that the tryptic degradation pattern of the Neurospora plasma membrane H+-ATPase varies with the presence and absence of ligands, thus providing information about conformational states of the enzyme (Addison, R., and Scarborough, G. A. (1982) J. Biol. Chem. 257, 10421-10426; Brooker, R. J., and Slayman, C. W. (1983) J. Biol. Chem. 258, 8827-8832). In the present study, sites of tryptic cleavage have been mapped by immunoblotting with N- and C-terminal specific antibodies and by direct sequencing of proteolytic products after electro-transfer to polyvinylidene difluoride filters. In the absence of ligands (likely to represent the E1 conformation), trypsin cleaved the 100-kDa ATPase polypeptide at three sites very near the N terminus: Lys-24, Lys-36, and Arg-73. Removal of the first 36 amino acid residues only slightly affected ATPase activity, but removal of the subsequent 37 residues inactivated the enzyme completely. In the presence of vanadate and Mg2+ (E2 conformation), the rate of trypsinolysis at Arg-73 was greatly reduced, and enzyme activity was protected. In addition, a new cleavage site near the C terminus (Arg-900) became accessible to trypsin. Both effects of vanadate occurred at micromolar concentrations, well within the range previously measured for vanadate inhibition of ATPase activity. Taken together, these results suggest that the Neurospora ATPase undergoes significant conformational changes at both termini of the polypeptide during its reaction cycle.  相似文献   

2.
We have shown previously (Brooker, R.J., and Slayman, C.W. (1982) J. Biol. Chem. 257, 12051-12055; Brooker, R. J., and Slayman, C. W. (1983) J. Biol. Chem. 258, 222-226) that the plasma membrane [H+]-ATPase of Neurospora crassa is inhibited by N-ethylmaleimide (NEM), which reacts at an essential nucleotide-protectable site on the Mr = 104,000 polypeptide. The present study demonstrates that Mg2+ has a biphasic effect on NEM inhibition. At low concentrations (0.01-0.1 mM, Mg2+ decreases the sensitivity of the enzyme to NEM, while at high concentrations (greater than 1 mM), it enhances sensitivity. These effects are seen in the presence or absence of nucleotides (ATP, ADP). Mg2+ also acts in a concentration-dependent way to influence the degradation of the ATPase by trypsin. Low concentrations of Mg2+ have little or no effect on tryptic inactivation of ATPase activity or on the disappearance of the Mr = 104,000 polypeptide and the stepwise appearance of Mr = 100,000 and 91,000 tryptic fragments. High concentrations of Mg2+ decrease the rate of inactivation, and a new fragment of Mr = 98,000 is seen. Taken together, the NEM and trypsin results indicate that the Neurospora [H+]-ATPase possesses high and low affinity Mg2+ binding sites which affect the conformation of the enzyme. The divalent cation specificity of the sites has also been investigated. Co2+, Mn2+, and (to a lesser extent) Ni2+ mimic the behavior of Mg2+, but Ca2+ has a different effect, at least at the high affinity site. It appears to bind to that site, based on its ability to inhibit ATP hydrolysis (in the presence of Mg2+), but does not offer protection against NEM inhibition. The results suggest a way in which Ca2+ may serve as a physiological regulator of the ATPase.  相似文献   

3.
Functionally inverted plasma membrane vesieles isolated from the eukaryotic microorganism Neurospora crassa generate and maintain a transmembrane electrical potential via ATP hydrolysis catalyzed by a plasma membrane ATPase (G. A. Scarborough, 1976, Proc. Nat. Acad. Sci. USA73, 1485–1488). In order to facilitate investigation of the molecular mechanism of the electrogenic ATPase, and other transport systems, we have developed a method for the large scale isolation and storage of Neurospora plasma membranes in a stable form. Large quantities of open plasma membrane sheets (ghosts) are isolated by a scaled-up modification of the original method (G. A. Scarborough, 1975, J. Biol. Chem.250, 1106–1111) and stored at ?26°C in 60% glycerol (vv). As needed, the ghosts are washed free of glycerol and then converted to closed vesicles by a modification of the original method. With this technique, plasma membrane vesicles with normal electrogenic pump activity can be prepared daily in approximately 2.5 h.  相似文献   

4.
The rate of ATP hydrolysis by the Neurospora plasma membrane [H+]-ATPase has been measured over a wide range of Mg2+ and ATP concentrations, and on the basis of the results, a kinetic model for the enzyme has been developed. The model includes the following three binding sites: 1) a catalytic site at which MgATP serves as the true substrate, with free ATP as a weak competitive inhibitor; 2) a high affinity site for free Mg2+, which serves to activate the enzyme with an apparent K1/2 (termed KMgA) of about 15 microM; and 3) a separate low affinity site at which Mg2+ causes mixed type inhibition, lowering the Vmax while raising the KS for MgATP at the catalytic site. The Ki for Mg2+ at the low affinity site (termed KMgI) is about 3.5 mM. The model satisfactorily explains the activity of the enzyme as Mg2+ and ATP are varied, separately and together, over a wide range. It can also account for the previously reported effects of Mg2+ and ATP on the inhibition of the Neurospora [H+]-ATPase by N-ethylmaleimide (Brooker, R. J., and Slayman, C. W. (1982) J. Biol. Chem. 257, 12051-12055; Brooker, R. J., and Slayman, C. W. (1983) J. Biol. Chem. 258, 8827-8832).  相似文献   

5.
1. F1-ATPase has been extracted by the diphosphatidylglycerol procedure from mitochondrial ATPase complexes that differ in ATPase activity, cold stability, ATPase inhibitor and magnesium content. 2. The ATPase activity of the isolated enzymes was dependent upon the activity of the original particles. In this respect, F1-ATPase extracted from submitochondrial particles prepared in ammonia (pH 9.2) and filtered through Sephadex G-50 was comparable to the enzyme purified by conventional procedures (Horstman, L.L. and Racker, E. (1970) J. Biol. Chem. 245, 1336--1344), whereas F1-ATPase extracted from submitochondrial particles prepared in the presence of magnesium and ATP at neutral pH was similar to factor A (Andreoli, T.E., Lam, K.W. and Sanadi, D.R. (1965) J. Biol. Chem. 240, 2644--2653). 3. No systematic relationship has been found in these F1-ATPase preparations between their ATPase inhibitor content and ATPase activity. Rather, a relationship has been observed between this activity and the efficiency of the ATPase inhibitor-F1-ATPase association within the membrane. 4. It is concluded that the ATPase activity of isolated F1-ATPase reflects the properties of original ATPase complex provided a rapid and not denaturing procedure of isolation is employed.  相似文献   

6.
Based on hydropathy analysis, the P-type cation translocating ATPases are believed to have similar topological arrangements in the membrane, but little independent evidence exists for their precise pattern of transmembrane folding. As a first step toward defining the topology of the Neurospora plasma membrane H+-ATPase, we have mapped the orientation of the amino and carboxyl termini. In three different types of experiments, both termini of the H+-ATPase were shown to be exposed at the cytoplasmic surface of the plasma membrane: 1) antibodies specific for the amino and carboxyl termini bound to permeabilized but not intact cells; 2) inside-out plasma membrane vesicles were approximately 100-fold more effective than intact cells in competing for antibody binding; and 3) trypsin, which is known to proteolyze three sites at the amino terminus and one site at the carboxyl terminus of the purified Neurospora H+-ATPase (Mandala, S. M., and Slayman, C. W. (1988) J. Biol. Chem. 263, 15122-15128), was found in the present study to cleave the same sites in inside-out plasma membrane vesicles but not in intact cells. These results indicate that the ATPase polypeptide traverses the membrane an even number of times, in support of a previously published topological model (Hager, K. M., Mandala, S. M., Davenport, J. W., Speicher, D. W., Benz, E. J., Jr., and Slayman, C. W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 7693-7697).  相似文献   

7.
Two-dimensional crystalline arrays of Ca2+-ATPase molecules develop after treatment of sarcoplasmic reticulum vesicles with Na3VO4 in calcium-free medium (Dux, L., and Martonosi, A. (1983) J. Biol. Chem. 258, 2599-2603). The formation of Ca2+-ATPase crystals is inhibited by Ca2+ (2 microM), or ATP (5 mM), but not by ADP, 5'-adenylylimidodiphosphate, or adenylylmethylenediphosphonate. ATPase crystals did not form at 37 degrees C and exposure of preformed crystals to 37 degrees C for 1 h caused the disappearance of crystal lattice. Inorganic orthophosphate (1 mM at pH 6.0) promoted the formation of a distinct crystal form of Ca2+-ATPase, which was different from that produced by Na3VO4. These observations indicate that Ca2+, ATP, inorganic phosphate, pH, and temperature influence the interactions between ATPase molecules in the sarcoplasmic reticulum membrane.  相似文献   

8.
The effects of adenylyl methylene diphosphate (AMD), a non-hydrolyzable ATP analogue, were examined in sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle. The Ca2+-dependent APTase activity measured at 5 degrees C and pH 7.0 in 5.2 micrometer [gamma-32P]ATP and in the absence of added alkali metal salts was stimulated by added AMD. The steady state level of phosphoenzyme, however, was not decreased greatly by added AMP under these conditions. The hydrolysis of the phosphoenzyme formed at the steady state in the absence of added alkali metal salts was accelerated by added AMD to an extent that can account for the stimulation of the ATPase activity. At 5 degrees C and pH 7.0 the maximum stimulation of phosphoenzyme hydrolysis by AMD and the Km value for this ATP analogue were 4.3-fold and 40 micrometer, respectively. These results provide further support for our previous conclusion (Shigekawa, M., Dougherty, J.P. and Katz, A.M. (1978) J.Biol. Chem. 253, 1442--1450) that 2 classes of ATP site exist in the calcium pump ATPase in the absence of added alkali metal salts, one being the catalytic site and the other being the regulation site which activates the activity of the catalytic site.  相似文献   

9.
We have shown that the rat liver plasma membrane has at least two (Ca2+-Mg2+)-ATPases. One of them has the properties of a plasma membrane Ca2+-pump (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856); the other one, which we have purified (Lin, S.-H., and Fain, J.N. (1984) J. Biol. Chem. 259, 3016-3020) and characterized (Lin, S.-H. (1985) J. Biol. Chem. 260, 10976-10980) has no established function. In this study we present evidence that the purified (Ca2+-Mg2+)-ATPase is a plasma membrane ecto-ATPase. In hepatocytes in primary culture, we can detect Ca2+-ATPase and Mg2+-ATPase activities by addition of ATP to the intact cells. The external localization of the active site of the ATPase was confirmed by the observation that the Ca2+-ATPase and Mg2+-ATPase activities were the same for intact cells, saponin-treated cells, and cell homogenates. Less than 14% of total intracellular lactate dehydrogenase, a cytosolic enzyme, was released during a 30-min incubation of the hepatocytes with 2 mM ATP. This indicates that the hepatocytes maintained cytoplasmic membrane integrity during the 30-min incubation with ATP, and the Ca2+-ATPase and Mg2+-ATPase activity measured in the intact cell preparation was due to cell surface ATPase activity. The possibility that the ecto-Ca2+-ATPase and Mg2+-ATPase may be the same protein as the previously purified (Ca2+-Mg2+)-ATPase was tested by comparing the properties of the ecto-ATPase with those of (Ca2+-Mg2+)-ATPase. Both the ecto-ATPase and the (Ca2+-Mg2+)-ATPase have broad nucleotide-hydrolyzing activity, i.e. they both hydrolyze ATP, GTP, UTP, CTP, ADP, and GDP to a similar extent. The effect of Ca2+ and Mg2+ on the ecto-ATPase activity is not additive indicating that both Ca2+- and Mg2+-ATPase activities are part of the same enzyme. The ecto-ATPase activity, like the (Ca2+-Mg2+)-ATPase, is not sensitive to oligomycin, vanadate, N-ethylmaleimide and p-chloromercuribenzoate; and both the ecto-ATPase and purified (Ca2+-Mg2+)-ATPase activities are insensitive to protease treatments. These properties indicate that the previously purified (Ca2+-Mg2+)-ATPase is an ecto-ATPase and may function in regulating the effect of ATP and ADP on hepatocyte Ca2+ mobilization (Charest, R., Blackmore, P.F., and Exton, J.H. (1985) J. Biol. Chem. 260, 15789-15794).  相似文献   

10.
The high affinity (Ca2+-Mg2+)-ATPase purified from rat liver plasma membrane (Lin, S.-H., and Fain, J. N. (1984) J. Biol. Chem. 259, 3016-3020) has been further characterized. This enzyme also possesses Mg2+-stimulated ATPase activity with K0.5 of 0.16 microM free Mg2+. However, the Vm of the Mg2+-stimulated activity is only half that of the Ca2+-stimulated ATPase activity. The effects of Ca2+ and Mg2+ on this enzyme are not additive. Both the Ca2+-stimulated ATPase and Mg2+-stimulated ATPase activities have similar affinities for ATP (0.21 mM and 0.13 mM, respectively) and similar substrate specificities (they are able to utilize ATP, GTP, UTP, CTP, ADP, and GDP as substrates); both activities are not inhibited by vanadate, p-chloromercuribenzoate, ouabain, dicyclohexylcarbodiimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, oligomycin, F-, N-ethylmaleimide, La3+, and oxidized glutathione. These properties of the Mg2+- and Ca2+-ATPases indicate that both activities reside on the same protein. A comparison of the properties of this high affinity (Ca2+-Mg2+)-ATPase with those of the liver plasma membrane ATP-dependent Ca2+ transport activity reconstituted into artificial liposomes (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856) suggests that this high affinity (Ca2+-Mg2+)-ATPase is not the biochemical expression of the liver plasma membrane Ca2+ pump. The function of this high affinity (Ca2+-Mg2+)-ATPase remains unknown.  相似文献   

11.
Using a vacuolar preparation virtually free of contamination by other organelles, we isolated vacuolar membranes and demonstrated that they contain an ATPase. Sucrose density gradient profiles of vacuolar membranes show a single peak of ATPase activity at a density of 1.11 g/cm3. Comparison of this enzyme with the two well-studied proton-pumping ATPases of Neurospora plasma membranes and mitochondria shows that it is clearly distinct. The vacuolar membrane ATPase is insensitive to the inhibitors oligomycin, azide, and vanadate, but sensitive to N,N'-dicyclohexylcarbodiimide (Ki = 2 microM). It has a pH optimum of 7.5, requires a divalent cation (Mg2+ or Mn2+) for activity, and is remarkably unaffected (+/- 20%) by a number of monovalent cations, anions, and buffers. In its substrate affinity (Km for ATP = 0.2 mM), substrate preference (ATP greater than GTP, ITP greater than UTP greater than CTP), and loss of activity with repeated 1 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid washes, the vacuolar membrane ATPase resembles the F1F0 type of ATPase found in mitochondria and differs from the integral membrane type of ATPase in plasma membranes.  相似文献   

12.
The presence of the poky mutation in Neurospora crassa produces mitochondria which are defective in cytochromes b and aa3 but which compensate by means of an alternate, cyanide-insensitive oxidase. As previously reported (Slayman, Rees, Orchard & Slayman, J. Biol. Chem., 250:396, 1975) cyanide blockade of the poky strain carrying the partial suppressor f results in a metabolic downshift of only 56%, compared with a downshift of 98% in wild-type Neurospora; the downshift is accompanied by exponential decay of ATP in the wild type, but by an undershoot and monotonic recovery of ATP in poky f. Whereas the membrane potential declines with ATP in wild-type Neurospora, it oscillates near the resting level (ca. -- 185 mV) in poky f. Oscillations begin with a depolarizing swing of 30--100 mV, followed by slight hyperpolarization, then by 2--4 damped cycles having a frequency near 1/min. Similar oscillations arise with antimycin, salicyl hydroxamic acid, and several uncoupling agents, and depend on partial maintenance of respiration through either the defective cytochrome chain or the alternate oxidase. Small oscillations (maximally +/- 30% of the control value) in membrane conductance also occur, roughly in phase with the oscillations of membrane potential. The amplitude of these, in comparison with the nonlinearity of the normal current-voltage relationship for the membrane, strongly suggests that they arise as a secondary consequence of the voltage changes. Therefore, since it has previously been argued (Slayman, Long & Lu, J. Membrane Biol. 14:305, 1973) that most of the resting membrane potential in the organism arises from active extrusion of H+ ions, the simolest interpretation of the cyanide-induced voltage oscillations is that current through the H+ pump is modulated cyclically. The ultimate mechanism for this modulation is unresolved, but could plausible involve a metabolic feedback system, oscillations of intracellular pH, or both. In many respects the observed voltage oscillations resemble the well-known oscillations of mitochondrial H+ flux which are produced by sudden metabolic shifts.  相似文献   

13.
The transmembrane topography of the Neurospora crassa plasma membrane H(+)-ATPase has been investigated using purified, reconstituted components and direct protein chemical techniques. Reconstituted proteoliposomes containing H(+)-ATPase molecules oriented predominantly with their cytoplasmic surface facing outward were treated with trypsin to liberate peptides present on the cytoplasmic surface of the H(+)-ATPase as recently described (Hennessey, J.P., Jr., and Scarborough, G. (1990) J. Biol. Chem. 265, 532-537. The released peptides were then separated from the proteoliposomes by gel filtration chromatography and further purified by high performance liquid chromatography. Fourteen such peptides were identified by NH2-terminal amino acid sequence analysis, directly defining these parts of the molecule as present on the cytoplasmic surface of the membrane. Moreover, this information identified several additional flanking stretches as likely to be cytoplasmically located by virtue of the fact that they are too short to cross the membrane and return. These results and the results of other recent experiments establish 417 residues of the 919 present in the ATPase molecule, at positions 2-100, 186-256, 441-663, and 897-920, as cytoplasmically located. Taken together with the results of our preliminary investigations of the membrane embedded sectors of the ATPase, this information allows the formulation of a reasonably detailed model for the transmembrane topography of the ATPase polypeptide chain.  相似文献   

14.
The reaction of N-ethylmaleimide (NEM) with Cys-532 of the Neurospora plasma membrane [H+]ATPase results in inhibition of ATP hydrolysis which is protected by MgADP (Pardo, J. P., and Slayman, C. W. (1989) J. Biol. Chem. 264, 9373-9379). To examine the conformational state of the ATPase upon NEM modification, we have used limited trypsinolysis and domain-specific antibodies. The NEM-reacted ATPase shows increased sensitivity to trypsin, particularly in the central hydrophilic region of the polypeptide thought to contain the ATP binding and phosphorylation sites. In addition, competitive enzyme-linked immunosorbent assays indicate that the C-terminal domain of the ATPase becomes more accessible to antibody binding while the N-terminal region becomes more protected. The NEM-induced structural change is accompanied by loss of the ability to form a phosphoenzyme intermediate. The change in tertiary conformation occurs specifically upon NEM reaction with Cys-532 since neither NEM modification of Cys-545 nor fluorescein 5'-isothiocyanate modification of Lys-474 alters the tryptic digestion pattern of the ATPase. Furthermore, modification of Cys-532 with the less bulky sulfhydryl reagent methyl methanethiosulfonate does not result in a detectable structural change or loss of enzymatic activity. Thus, the introduction of a relatively bulky maleimide group at Cys-532 has specific and far-reaching effects upon the structure and function of the ATPase.  相似文献   

15.
Previous studies from this laboratory (Brooker, R. J., and Slayman, C. W. (1983) J. Biol. Chem. 258, 222-226; Davenport, J. W., and Slayman, C. W. (1988) J. Biol. Chem. 263, 16007-16013) have used the sulfhydryl reagent N-ethylmaleimide (NEM) to define two sites on the Neurospora plasma membrane H+-ATPase: a "fast" site which reacts in several minutes with no loss of enzymatic activity and a "slow" site which reacts in tens of minutes to produce complete inactivation of the enzyme. The slow site is protected when MgATP or MgADP is bound to the catalytic site of the ATPase. The present study demonstrates that the fluorescent reagent 5-[2-iodoacetamido)ethyl)-1-aminonaphthalenesulfonic acid (IAEDANS) can be used to label five of the eight cysteine residues of the Neurospora ATPase (Cys376, Cys409, Cys472, Cys532, Cys545). Tryptic peptides bearing those residues have been purified by high performance liquid chromatography and located within the known primary structure of the ATPase by amino acid analysis and/or sequencing. By pretreating the enzyme with NEM in the presence or absence of MgADP before incubation with IAEDANS, it has been possible to identify the fast NEM site as Cys545 and the slow MgADP-protectable NEM site as Cys532. Both residues lie within the central hydrophilic domain of the protein, close to a highly conserved stretch of amino acids that may be involved in nucleotide binding. However, all five IAEDANS-reactive cysteines can be nearly completely modified by the less bulky sulfhydryl reagent methyl methanethiosulfonate with less than 20% inhibition of enzyme activity; thus, none of the five cysteines can be considered to play a direct role in the reaction cycle of the ATPase.  相似文献   

16.
The chemical nature of the phosphoryl enzyme linkage of the electrogenic proton-translocating ATPase (ATP phosphohydrolase, EC 3.6.1.3) in the plasma membrane of Neurospora has been identified as a mixed anhydride between phosphate and the beta-carboxyl group of an aspartic acid residue in the polypeptide chain. Incubation of isolated Neurospora plasma membrane vesicles containing 32P-labeled ATPase in buffers of increasing pH followed by analysis of the hydrolysis products yielded a pH versus hydrolysis profile characteristic of an acyl phosphate linkage. Reaction of labeled membranes with hydroxylamine at pH 5.3 also released [32P]i from the ATPase. Amino acid analyses of the Na[3H]BH4 reduction products obtained from membranes containing phosphorylated and dephosphorylated ATPase identified [3H]homoserine, the expected reduction product of beta-aspartyl phosphate, as the only additional tritiated reduction product in the samples from phosphorylated membranes. Tritium was not found in alpha-amino-delta-hydroxyvaleric acid, the reduction product of gamma-glutamyl phosphate, nor in proline, the degradation product of alpha-amino-delta-hydroxyvaleric acid. These results indicate that the phosphorylated intermediate of the Neurospora plasma membrane ATPase is a beta-aspartyl phosphate identical with that already known to exist in the Na+:K+- and Ca2+-translocating ATPases of animal cell origin. A common model for the mechanisms of all 3 ion-translocating ATPases is presented.  相似文献   

17.
The interactions were analyzed between actin, myosin, and a recently discovered high molecular weight actin-binding protein (Hartwig, J. H., and Stossel, T. P. (1975) J. Biol Chem.250,5696-5705) of rabbit alveolar macrophages. Purified rabbit alveolar macrophage or rabbit skeletal muscle F-actins did not activate the Mg2+ATPase activity of purified rabbit alveolar macrophage myosin unless an additional cofactor, partially purified from macrophage extracts, was added. The Mg2+ATPase activity of cofactor-activated macrophage actomyosin was as high as 0.6 mumol of Pi/mg of myosin protein/min at 37 degrees. The macrophage cofactor increased the Mg2+ATPase activity of rabbit skeletal muscle actomyosin, and calcium regulated the Mg2+ATPase activity of cofactor-activited muscle actomyosin in the presence of muscle troponins and tropomyosin. However, the Mg2+ATPase activity of macrophage actomyosin in the presence of the cofactor was inhibited by muscle control proteins, both in the presence and absence of calcium. The Mg2+ATPase activity of the macrophage actomyosin plus cofactor, whether assembled from purified components or studied in a complex collected from crude macrophage extracts, was not influenced by the presence of absence of calcium ions. Therefore, as described for Acanthamoeba castellanii myosin (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem. 248, 4691-4697), rabbit alveolar macrophage myosin requires a cofactor for activation of its Mg2+ATPase activity by F-actin; and no evidence was found for participation of calcium ions in the regulation of this activity.In macrophage extracts containing 0.34 M sucrose, 0.5 mM ATP, and 0.05 M KCl at pH 7.0,the actin-binding protein bound F-actin into bundles with interconnecting bridges. Purified macrophage actin-binding protein in 0.1 M KCl at pH 7.0 also bound purified macrophage F-actin into filament bundles. Macrophage myosin bound to F-actin in the absence but not the presence of Mg2+ATP, but the actin-binding protein did not bind to macrophage myosin in either the presence or absence of Mg2+ATP.  相似文献   

18.
Characterization of a vacuolar proton ATPase in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
Of the total ATPase activity in homogenates of the ameba, Dictyostelium discoideum, approximately one-third was inhibited at pH 7 by 25 microM 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Upon isopycnic sucrose density gradient centrifugation, the bulk of the NBD-CI-sensitive ATPase activity was recovered in a major membrane fraction with a broad peak at 1.16 g/ml, well-resolved from markers for plasma membranes, mitochondria, lysosomes and contractile vacuoles. The gradient peak had a specific activity of 0.5 mumol/min per mg protein. The activity was half-inhibited by 1 microM silicotungstate, 2 microM diisothiocyanatostilbene disulfonate (DIDS), 2.5 microM dicyclohexylcarbodiimide (DCCD), 4 microM NBD-CI and 20 microM N-ethylmaleimide (NEM) but was resistant to conventional inhibitors of mitochondrial and plasma membrane ATPase. That this ATPase activity constituted a proton pump was shown by the MgATP-dependent uptake and quenching of Acridine orange fluorescence by partially purified vacuoles. The Acridine orange uptake was specifically blocked by the aforementioned inhibitors. The generation of proton electrochemical gradients was suggested by the stimulation of enzyme activity by protonophores (fatty acids) and cation exchangers (nigericin). Uncoupling stimulated the ATPase activity as much as 20-fold, revealing an unusually high impermeability of the membranes to protons. ATPase activity was also stimulated by halide ions, apparently through a parallel conductance pathway. Under a variety of sensitive test conditions, the reverse enzyme reaction (i.e., incorporation of 32Pi into ATP) was not detected. We conclude that this major H+-ATPase serves to acidify the abundant prelysosomal vacuoles found in D. discoideum (Padh et al. (1989) J. Cell Biol. 108, 865-874). The finding of a vacuolar H+-ATPase in a protist suggests the ubiquity of this enzyme among the eukaryotic kingdoms.  相似文献   

19.
Cytoplasmic free Ca2+ (Ca2+i) was chelated to 10-20 nM in the macrophage cell line J774 either by incubation with quin2 acetoxymethyl ester in the absence of external Ca2+ (Di Virgilio, F., Lew, P.D., and Pozzan, T. (1984) Nature 310, 691-693) or by loading [ethyl-enebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) into the cytoplasm via reversible permeabilization of the plasma membrane with extracellular ATP (Steinberg, T.H., Newman, A.S., Swanson, J.A., and Silverstein, SS.C. (1987) J. Biol. Chem. 262, 8884-8888; Di Virgilio, F., Meyer, B.C., Greenberg, S., and Silverstein, S.C. (1988) J. Cell Biol. 106, 657-666). After removal of ATP from the incubation medium, ATP-permeabilized Ca2+i-depleted macrophages recovered a near-normal plasma membrane potential which slowly depolarized over a 2-4 h incubation at low [Ca2+]i. In both ATP-treated and quin2-loaded cells, depolarization of plasma membrane potential was paralleled by an increase in plasma membrane permeability to low molecular weight aqueous solutes such as eosin yellowish (Mr 692), ethidium bromide (Mr 394), and lucifer yellow (Mr 463). This increased plasma membrane permeability was not accompanied by release of the cytoplasmic marker lactic dehydrogenase for incubations up to 4 h and was likely a specific effect of Ca2+i depletion since it was not caused by: (i) the mere incubation of macrophages with extracellular EGTA, i.e. at near-normal [Ca2+]i; and (ii) loading into the cytoplasm of diethylenetriaminepentaacetic acid, a specific chelator of heavy metals with low affinity for Ca2+. Treatment of Ca2+i-depleted cells with direct (phorbol 12-myristate 13-acetate) or indirect (platelet-activating factor) activators of protein kinase C prevented the increase in plasma membrane permeability. Down-regulation of protein kinase C rendered Ca2+i-depleted macrophages refractory to the protective effect of phorbol 12-myristate 13-acetate. This report suggests a role for Ca2+i and possibly protein kinase C in the regulation of plasma membrane permeability to low molecular weight aqueous solutes.  相似文献   

20.
The effect of ATP on calcium binding of the Ca2+-ATPase of the sarcoplasmic reticulum has not been clarified. By comparing the calcium dependence of the ATPase activity and of phosphorylation of the ATPase molecules with that of calcium binding in the absence of ATP, we show the existence of two types of regulatory site of the enzyme molecules at which ATP binding variously improves the calcium binding performance of the molecules depending on the aggregation state of the molecules and pH; the two regulatory sites bind ATP at submillimolar (0.25 mm) and millimolar (5 mm) ATP, respectively. The results are discussed based on a model of two conformational variants (A and B forms) of the chemically equivalent ATPase molecules (Nakamura, J., and Furukohri, T. (1994) J. Biol. Chem. 269, 30818-30821). For example, in the sarcoplasmic reticulum membrane at pH 7.40, submillimolar ATP converted the calcium binding manner of the A form from noncooperative (Hill number (n(H)) of approximately 1) to cooperative (n(H) approximately 2), concurrent with a decrease in the apparent calcium affinity (K(0.5)) from 2-6 to 0.1-0.3 microm. The binding of the A form became almost the same as that of the B form (n(H) approximately 2, K(0.5) approximately 0.2 microm), which was not affected by ATP. Millimolar ATP further decreased the K(0.5) of the cooperative binding of the two forms to approximately 0.05 microm. Regulation of the calcium binding performance by ATP is discussed in terms of monomeric and oligomeric pathway models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号