首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
同源重组技术研究进展   总被引:3,自引:0,他引:3  
同源重组是近年来迅速发展起来的细胞染色体基因组中某一特殊基因进行定向操作,以便借助转基因动物手段来精确研究基因结构与功能及表达调控的技术。本文对同源重组发生的分子机理,实验设计策略,打靶细胞的筛选和富集方法,近年来在这一领域中所取得的主要成就及应用前景进行了较全面的评述。  相似文献   

2.
构建携带哺乳动物细胞筛选基因和酵母人工染色体(YAC)同源序列的载体,利用酵母中能够发生高频率同源重组的特点对YAC分别进行左、右臂修饰,依次将NEO、EGFP及PURO基因定点整合到YAC左右臂上。用营养缺陷筛选的方法排除酵母发生突变或随机整合等情况后,用PCR及Southern杂交方法证实各筛选基因定点整合于YAC两臂上,从而获得携带3个哺乳动物细胞筛选基因的YAC克隆。并且由此建立了通过同源重组将哺乳动物标记基因定点引入YAC左右臂的多基因修饰平台。  相似文献   

3.
靶向整合研究进展   总被引:1,自引:0,他引:1  
基因治疗的目的是将遗传物质导入细胞并使之得到适宜水平的表达,以纠正机体的遗传缺陷,恢复细胞的正常功能或杀死癌细胞及致病微生物。目前广泛应用的病毒及非病毒载体不能很好地满足临床要求,是基因治疗亟需解决的关键技术。同源重组介导的基因靶向性整合,是遗传性疾病基因治疗的较佳方案。近年来有关同源重组研究的进展,使得其应用于基因治疗成为可能。  相似文献   

4.
5.
CRISPR系统具有精确识别及剪切特异性DNA序列功能而被开发成一种高效的基因编辑工具。它以成本低廉、操作简便、效率高及通用性广等优势,成为新一代最具代表性的基因编辑技术。在应用中,CRISPR系统可在特定靶点形成DNA双链断裂,继而诱导同源重组(HDR)或非同源末端连接修复(NHEJ),为基因组定向改造与调控带来了革命性的突破。该文将对近年来生物科学领域中发展迅猛的研究工具CRISPR/Cas系统进行介绍,包括其结构、作用原理、类型及应用等,并重点阐述同源重组或非同源末端连接修复途径介导的基因定向编辑技术及应用。  相似文献   

6.
目的 丙酸杆菌基因敲除体系的构建及其验证.方法 利用PCR技术扩增丙酸杆菌hemE基因上、下游约500 bp左右片段,构建由上下游同源臂及hygB抗性基因组成的打靶质粒pPK705-arms-hygB.将打靶质粒转入丙酸杆菌感受态细胞,利用同源重组技术定向敲除hemE基因,并通过连续传代培养,消除外源质粒.最后,利用PCR技术验证丙酸杆菌染色体和打靶质粒发生同源重组.结果 成功敲除了丙酸杆菌hemE基因.结论 打靶质粒pPK705-arms-hygB能够与宿主基因组DNA发生重组,对稳定地改善其整个代谢途径的研究奠定了方法学基础.  相似文献   

7.
具有同源重叠区的酵母人工染色体(YAC)可以利用酵母细胞减数分裂进行同源重组,从而构建更大的人工染色体基因组,这对生命科学基础研究和生物技术应用研究有着非常重要的意义。本实验以两个含人免疫球蛋白κ链基因簇片段的YAC克隆为材料,通过酵母改型、异型接合、二倍体发孢、单孢子筛选和分子生物学鉴定等技术和方法,利用酵母菌减数分裂同源重组机制,构建了一条包含人的免疫球蛋白κ轻链32个Vκ基因、5个Jκ基因、Cκ基因、Eκ基因和κde基因的YAC重组体,长度约400kb。同时,本实验利用溶壁酶消化法获取单孢子重组体,代替了传统的显微分孢操作。使得利用酵母人工染色体减数分裂同源重组的技术更加简便可行。  相似文献   

8.
目的:探索通过细菌人工染色体(BAC)同源重组系统构建条件基因敲除载体的高效率方法,提高条件基因敲除小鼠(Flox小鼠)的构建效率。方法:利用作者自己构建的噬菌体重组酶系统,通过BAC同源重组进行条件型基因敲除载体构建工作。首先通过亚克隆构建了一系列载体含有同源臂的靶向质粒,线性化后,打靶片段经电穿孔法转入大肠杆菌内,与相应的BAC同源重组,再经过三步同源重组和一步位点特异性重组,构建小鼠条件型基因敲除载体。结果:高效率构建了小鼠基因的最终条件基因敲除载体。结论:通过BAC同源重组高效构建条件基因敲除载体,为条件基因敲除载体的构建提供了全新思路,并为FLox小鼠的建立,及相应基因在发育、生理、致病机制等方面的功能研究奠定了基础。  相似文献   

9.
具有同源重叠区的酵母人工染色体(YAC)可以利用酵母细胞减数分裂进行同源重组,从而构建更大的人工染色体基因组,这对生命科学基础研究和生物技术应用研究有着非常重要的意义。本实验以两个含人免疫球蛋白κ链基因簇片段的YAC克隆为材料,通过酵母改型、异型接合、二倍体发孢、单孢子筛选和分子生物学鉴定等技术和方法,利用酵母菌减数分裂同源重组机制,构建了一条包含人的免疫球蛋白κ轻链32个Vκ基因、5个Jκ基因、Cκ基因、Eκ基因和κde基因的YAC重组体,长度约400kb。同时,本实验利用溶壁酶消化法获取单孢子重组体,代替了传统的显微分孢操作。使得利用酵母人工染色体减数分裂同源重组的技术更加简便可行。  相似文献   

10.
基因打靶及其应用   总被引:4,自引:0,他引:4  
用活细胞染色体DNA可与外源性DNA同源序列发生同源重组的性质,达到定点修饰改造染色体某基因的目的,此法称基因打靶.基因的同源重组是较普遍的生物现象,其分子机理尚未阐明,但活细胞内确有一酶系可使DNA的同源序列在细胞内发生重组,这一事实已无可争辨.此事实为基因打靶的理论基础.基因打靶技术操作的关键是建立一含筛选基因的重组载体,并有效地把它转入细胞核内.基因打靶命中的细胞可稳定遗传.基因打靶在改造生物品种,一些复杂生命现象(如发育的分子机制等)及临床理论研究均有广阔的前景.  相似文献   

11.
The hotspots of meiotic recombination in the human genome can be localized by genetic techniques. The resolution of these techniques is in the range of kilobases and depends on the density of the physical markers identifying allelic variants of the chromosomal loci. We thought it would be interesting to localize these sites with higher resolution. Assuming that some human chromosomal sites conserve their propensity for recombination when cloned in yeast, we localized the hotspots of recombination in several yeast artificial chromosomes (YACs) carrying human DNA. A number of potential recombination hotspots could be identified in the clones studied. Among them there are two classes of sites that are particularly recombination prone also in human meiotic cells: sites associated with CpG islands and sites located in the vicinity of long minisatellite sequences.Communicated by G. P. Georgiev  相似文献   

12.
Large perturbation transient photovoltage and impedance spectroscopy measurements are used to gain insights into recombination in organic photovoltaic devices. The combination of these two simple optoelectronic techniques enables characterization of recombination order as well as mobile and trapped charge evolution over a large range of carrier densities. The data show that trapped charge is approximately equal to total charge at low carrier densities in the high efficiency devices measured. Between low and high charge carrier density, the order of recombination is observed to vary from monomolecular to bimolecular to higher order. The new techniques and methods presented can be applied to any type of photovoltage device to gain insight into device operation and limitations.  相似文献   

13.
Recombination is a ubiquitous genetic process which results in the exchange of DNA between two substrates. Homologous recombination occurs between DNA species with identical sequence whereas illegitimate recombination can occur between DNA with very little or no homology. Site-specific recombination is often used by temperate phages to stably integrate into bacterial chromosomes. Characterisation of the mechanisms of recombination in mycobacteria has mainly focussed on RecA-dependent homologous recombination and phage-directed site-specific recombination. In contrast the high frequency of illegitimate recombination in slow-growing mycobacteria has not been explained. The role of DNA repair in dormancy and infection have not yet been fully established, but early work suggests that RecA-mediated pathways are not required for virulence. All three recombination mechanisms have been utilised in developing genetic techniques for the analysis of the biology and pathogenesis of mycobacteria. A recently developed method for studying essential genes will generate further insights into the biology of these important organisms.  相似文献   

14.
A reduction in recombination in the pseudoautosomal region is associated with an increased frequency of aneuploid 24,XY human sperm. Similarly, individuals with paternally derived Klinefelter syndrome (47,XXY) also have a paucity of recombination in the chromosomes that have undergone nondisjunction. Meiotic studies using newly developed immunocytogenetic techniques have demonstrated errors of chromosome synapsis and significantly reduced recombination in infertile men with nonobstructive azoospermia. These men have an increased risk of aneuploidy in sperm that have been surgically removed from the testes. Thus, evidence is starting to accumulate that reduced recombination has a marked effect on the generation of aneuploid sperm.  相似文献   

15.
Ng SH  Parvanov E  Petkov PM  Paigen K 《Genomics》2008,92(4):204-209
Meiotic recombination is a fundamental process in all eukaryotes. Among organisms in which recombination initiates prior to synapsis, recombination preferentially occurs in short 1-to 2-kb regions, known as recombination hotspots. Among mammals, genotyping sperm DNA has provided a means of monitoring recombination events at specific hotspots in male meiosis. To complement these current techniques, we developed an assay for amplifying all copies of a hotspot from the DNA of male and female germ cells, cloning the products into Escherichia coli, and SNP genotyping the resulting colonies using fluorescence technology. This approach examines the molecular details of crossover and noncrossover events of individual meioses directly at active hotspots while retaining the simplicity of using pooled DNA. Using this technique, we analyzed recombination events at the Hlx1 hotspot located on mouse chromosome 1, finding that the results agree well with a prior genetic characterization of 3026 male and 3002 female meioses.  相似文献   

16.
Classical techniques for gene transfer into mammalian cells involve tedious screening procedures to identify transgenic clones or animals with the appropriate level and stability of expression or with the correct developmental patterns. These first generation technologies are clearly inadequate for complex genetic strategies by which gene regulation can be studied in its entire complexity. While site-specific insertions can principally be achieved by homologous recombination or by adapting the recombination apparatus from phages or yeast, these methods usually lack the required efficiency or they perturb expression patterns by the co-insertion of prokaryotic vector parts. Virtually all of these problems can be overcome by recombinase-mediated cassette exchange (RMCE) techniques which cleanly replace a resident cassette that is flanked by two hetero-specific recombination target sites for a second cassette with the analogous design, presented on a targeting vector. After illustrating the fundamentals of site-specific recombination by selected experiments, the authors (arranged in the chronological order of their contribution) will describe their efforts to develop RMCE into a method of wide applicability. Further developments that have been initiated utilizing the particular potential of the RMCE principle will be outlined.  相似文献   

17.
A class of viability models that generalize the standard additive model for the case of pairwise additive by additive epistatic interactions is considered. Conditions for existence and stability of steady states in the corresponding two-locus model are analyzed. Using regular perturbation techniques, the case when selection is weaker than recombination and the case when selection is stronger than recombination are investigated. The results derived are used to make conclusions on the dependence of population characteristics on the relation between the strength of selection and the recombination rate.  相似文献   

18.
The individual steps in the process of homologous recombination are particularly amenable to analysis by single-molecule imaging and manipulation experiments. Over the past 20 years these have provided a wealth of new information on the DNA transactions that make up this vital process. Exciting progress in developing new tools and techniques to analyze more complex components, dynamic reaction steps and molecular coordination continues at a rapid pace. Here we highlight recent results and indicate some emerging techniques likely to produce the next stage of advanced insight into homologous recombination. In this and related fields the future is bright.  相似文献   

19.
Recombination in yeast and the recombinant DNA technology   总被引:1,自引:0,他引:1  
The development of methods to isolate eukaryotic genes, alter these genes in vitro and reintroduce them into the cell has had a major impact on the study of recombination in the yeast Saccharomyces cerevisiae. In this paper we discuss how recombinant DNA techniques have been employed in the study of recombination in yeast and the results that have been obtained in these studies.  相似文献   

20.
Towards the ideal GMP: homologous recombination and marker gene excision   总被引:9,自引:0,他引:9  
A mayor aim of biotechnology is the establishment of techniques for the precise manipulation of plant genomes. Two major efforts have been undertaken over the last dozen years, one to set up techniques for site-specific alteration of the plant genome via homologous recombination ("gene targeting") and the other for the removal of selectable marker genes from transgenic plants. Unfortunately, despite multiple promising approaches that will be shortly described in this review no feasible gene targeting technique has been developed till now for crop plants. In contrast, several alternative procedures have been established successfully to remove selectable markers from plant genomes. Intriguingly besides techniques relying on transposons and site-specific recombinases, recent results indicate that homologous recombination might be a valuable alternative for the excision of marker genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号