首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three-finger proteins form a structurally related family of compounds that exhibit a great variety of biological properties. To address the question of the prediction of functional areas on their surfaces, we tentatively conferred the acetylcholinesterase inhibitory activity of fasciculins on a short-chain curaremimetic toxin. For this purpose, we assimilated the three-dimensional structure of fasciculin 2 with the one of toxin alpha. This comparison revealed that the tips of the first and second loops, together with the C terminus residue, deviated most. A first recombinant fasciculin/toxin alpha chimera was designed by transferring loop 1 in its entirety together with the tip of loop 2 of fasciculin 2 into the toxin alpha scaffold. A second chimera (rChII) was obtained by adding the point Asn-61 --> Tyr substitution. Comparison of functional and structural properties of both chimeras show that rChII can accommodate the imposed modifications and displays nearly all the acetylcholinesterase-blocking activities of fasciculins. The three-dimensional structure of rChII demonstrates that rChII adopts a typical three-fingered fold with structural features of both parent toxins. Taken together, these results emphasize the great structural flexibility and functional adaptability of that fold and confirm that structural deviations between fasciculins and short-chain neurotoxins do indeed reflect functional diversity.  相似文献   

2.
Though it possesses four disulfide bonds the three-fingered fold is amenable to chemical synthesis, using a Fmoc-based method. Thus, we synthesized a three-fingered curaremimetic toxin from snake with high yield and showed that the synthetic and native toxins have the same structural and biological properties. Both were characterized by the same 2D NMR spectra, identical high binding affinity (K(d) = 22 +/- 5 pM) for the muscular acetylcholine receptor (AChR) and identical low affinity (K(d) = 2.0 +/- 0.4 microM) for alpha7 neuronal AchR. Then, we engineered an additional loop cyclized by a fifth disulfide bond at the tip of the central finger. This loop is normally present in longer snake toxins that bind with high affinity (K(d) = 1-5 nM) to alpha7 neuronal AchR. Not only did the chimera toxin still bind with the same high affinity to the muscular AchR but also it displayed a 20-fold higher affinity (K(d) = 100 nM) for the neuronal alpha7 AchR, as compared with the parental short-chain toxin. This result demonstrates that the engineered loop contributes, at least in part, to the high affinity of long-chain toxins for alpha7 neuronal receptors. That three-fingered proteins with four or five disulfide bonds are amenable to chemical synthesis opens new perspectives for engineering new activities on this fold.  相似文献   

3.
The fasciculins are a family of closely related peptides that are isolated from the venom of mambas and exert their toxic action by inhibiting acetylcholinesterase (AChE). Fasciculins belong to the structural family of three-fingered toxins from Elapidae snake venoms, which include the alpha-neurotoxins that block the nicotinic acetylcholine receptor and the cardiotoxins that interact with cell membranes. The features unique to the known primary and tertiary structures of the fasciculin molecule were analyzed. Loop I contains an arginine at position 11, which is found only in the fasciculins and could form a pivotal anchoring point to AChE. Loop II contains five cationic residues near its tip, which are partly charge-compensated by anionic side chains in loop III. By contrast, the other three-fingered toxins show full charge compensation within loop II. The interaction of fasciculin with the recognition site on acetylcholinesterase was investigated by estimating a precollision orientation followed by determination of the buried surface area of the most probable complexes formed, the electrostatic field contours, and the detailed topography of the interaction surface. This approach has led to testable models for the orientation and site of bound fasciculin.  相似文献   

4.
Acetylcholinesterase (AChE) terminates the action of the neurotransmitter acetylcholine at cholinergic synapses in the central and peripheral nervous systems. Fasciculins, which belong to the family of "three-fingered" snake toxins, selectively inhibit mammalian AChEs with Ki values in the picomolar range. In solution, the cationic fasciculin appears to bind to the enzyme's peripheral anionic site, located near the mouth of the gorge leading to the active center, to inhibit catalysis either allosterically or by creating an electrostatic barrier at the gorge entry (or both). Yet the crystal structure of the fasciculin-mouse AChE complex, which shows that the central loop of fasciculin fits snugly at the entrance of the gorge, suggests that the mode of action of fasciculin is steric occlusion of substrate access to the active center. Mutagenesis of the fasciculin molecule, undertaken to establish a functional map of the binding surfaces, identified determinants common to those identified by the structural approach and revealed that only a few of the many fasciculin residues residing at the complex interface provide the strong contacts required for high affinity binding and enzyme inhibition. However, it did not reconcile the disparity between the kinetic and structural data. Finally, the crystal structure of mouse AChE without bound fasciculin shows a tetrameric assembly of subunits; within the tetramer, a short loop at the surface of a subunit associates with the peripheral site of a facing subunit and sterically occludes the entrance of the active center gorge. The position and complementarity of the peripheral site-occluding loop mimic the characteristics of the central loop of fasciculin bound to AChE. This suggests not only that the peripheral site of AChE is a site for association of heterologous proteins with interactive surface loops, but also that endogenous peptidic ligands of AChE sharing structural features with the fasciculin molecule might exist.  相似文献   

5.
The crystal structure of fasciculin 1, a potent acetylcholinesterase inhibitor from green mamba snake venom, has been solved by the multiple isomorphous replacement method complemented with anomalous scattering and subsequently refined at 1.9-A resolution. The overall structure of fasciculin is similar to those of the short alpha-neurotoxins and cardiotoxins, with a dense core rich in disulfide bridges and three long loops disposed as the central fingers of a hand. A comparison of these three prototypic toxin types shows that fasciculin 1 has structural features that are intermediate between those of the other two molecules. Its core region, which can be defined as a continuous stretch of conserved residues, is very similar to that of erabutoxin b, whereas the orientation of its long loops resembles that of cardiotoxin VII4. This result introduces a new element in the study of phylogenetic relationships of snake toxins and suggests that, after divergency from an ancestral gene, convergent evolution may have played an important factor in the evolution of these proteins. In fasciculin 1, several arginine and lysine residues are well ordered and relatively exposed to the solvent medium and may play a role in the binding to the peripheral site of acetylcholinesterases.  相似文献   

6.
Animal toxins are small proteins built on the basis of a few disulfide bonded frameworks. Because of their high variability in sequence and biologic function, these proteins are now used as templates for protein engineering. Here we report the extensive characterization of the structure and dynamics of two toxin folds, the "three-finger" fold and the short alpha/beta scorpion fold found in snake and scorpion venoms, respectively. These two folds have a very different architecture; the short alpha/beta scorpion fold is highly compact, whereas the "three-finger" fold is a beta structure presenting large flexible loops. First, the crystal structure of the snake toxin alpha was solved at 1.8-A resolution. Then, long molecular dynamics simulations (10 ns) in water boxes of the snake toxin alpha and the scorpion charybdotoxin were performed, starting either from the crystal or the solution structure. For both proteins, the crystal structure is stabilized by more hydrogen bonds than the solution structure, and the trajectory starting from the X-ray structure is more stable than the trajectory started from the NMR structure. The trajectories started from the X-ray structure are in agreement with the experimental NMR and X-ray data about the protein dynamics. Both proteins exhibit fast motions with an amplitude correlated to their secondary structure. In contrast, slower motions are essentially only observed in toxin alpha. The regions submitted to rare motions during the simulations are those that exhibit millisecond time-scale motions. Lastly, the structural variations within each fold family are described. The localization and the amplitude of these variations suggest that the regions presenting large-scale motions should be those tolerant to large insertions or deletions.  相似文献   

7.
The solution conformation of toxin alpha from Naja nigricollis (61 amino acids and four disulfides), a snake toxin which specifically blocks the activity of the nicotinic acetylcholine receptor (AcChoR), has been determined using nuclear magnetic resonance spectroscopy and molecular modeling. The solution structures were calculated using 409 distance and 73 dihedral angle restraints. The average atomic rms deviation between the eight refined structures and the mean structure is approximately 0.5 A for the backbone atoms. The overall folding of toxin alpha consists of three major loops which are stabilized by three disulfide bridges and one short C terminal loop stabilized by a fourth disulfide bridge. All the disulfides are grouped in the same region of the molecule, forming a highly constrained structure from which the loops protrude. As predicted, this structure appears to be very similar to the 1.4-A resolution crystal structure of another snake neurotoxin, namely, erabutoxin b from Laticauda semifasciata. The atomic rms deviation for the backbone atoms between the solution and crystal structures is approximately 1.7 A. The minor differences which are observed between the two structures are partly related to the deletion of one residue from the chain of toxin alpha. It is notable that, although the two toxins differ from each other by 16 amino acid substitutions, their side chains have an essentially similar spatial organization. However, most of the side chains which constitute the presumed AcChoR binding site for the curaremimetic toxins are poorly resolved in toxin alpha.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The crystal structure of the snake long alpha-neurotoxin, alpha-cobratoxin, bound to the pentameric acetylcholine-binding protein (AChBP) from Lymnaea stagnalis, was solved from good quality density maps despite a 4.2 A overall resolution. The structure unambiguously reveals the positions and orientations of all five three-fingered toxin molecules inserted at the AChBP subunit interfaces and the conformational changes associated with toxin binding. AChBP loops C and F that border the ligand-binding pocket move markedly from their original positions to wrap around the tips of the toxin first and second fingers and part of its C-terminus, while rearrangements also occur in the toxin fingers. At the interface of the complex, major interactions involve aromatic and aliphatic side chains within the AChBP binding pocket and, at the buried tip of the toxin second finger, conserved Phe and Arg residues that partially mimic a bound agonist molecule. Hence this structure, in revealing a distinctive and unpredicted conformation of the toxin-bound AChBP molecule, provides a lead template resembling a resting state conformation of the nicotinic receptor and for understanding selectivity of curaremimetic alpha-neurotoxins for the various receptor species.  相似文献   

9.
By transferring the central curaremimetic beta hairpin of the snake toxin alpha into the scaffold of the scorpion charybdotoxin, a chimeric protein was constructed that reproduced the three-dimensional structure and partially reproduced the function of the parent beta hairpin, without perturbing the three-dimensional structure of the scaffold [1]. Picosecond to hour time scale motions of charybdotoxin and the engineered protein were observed, in order to evaluate the dynamic consequences of the six deletions and eight mutations differentiating the two molecules. The chimeric protein dynamics were also compared to that of toxin alpha, in order to examine the beta hairpin motions in both structural contexts. Thus, 13C R1, R1rho and 1H-->13C nOe were measured for all the CalphaHalpha and threonine CbetaHbeta vectors. As the proteins were not labeled, accordion techniques combined to coherence selection by pulsed field gradients and preservation of magnetization following equivalent pathways were used to considerably reduce the spectrometer time needed. On one hand, we observed that the chimeric protein and charybdotoxin are subjected to similar picosecond to nanosecond time scale motions except around the modified beta sheet region. The chimeric protein also exhibits an additional millisecond time scale motion on its whole sequence, and its beta structure is less stable on a minute to hour time scale. On the other hand, when the beta hairpin dynamics is compared in two different structural contexts, i.e. in the chimeric protein and the curaremimetic toxin alpha, the picosecond to nanosecond time scale motions are fairly conserved. However, the microsecond to millisecond time scale motions are different on most of the beta hairpin sequence, and the beta sheet seems more stable in toxin alpha than in the chimera. The slower microsecond to hour time scale motions seem to be extremely sensitive to the structural context, and thus poorly transferred from one protein to another.  相似文献   

10.
Different snake venom neurotoxins block distinct subtypes of nicotinic acetylcholine receptors (nAChR). Short-chain alpha-neurotoxins preferentially inhibit muscle-type nAChRs, whereas long-chain alpha-neurotoxins block both muscle-type and alpha7 homooligomeric neuronal nAChRs. An additional disulfide in the central loop of alpha- and kappa-neurotoxins is essential for their action on the alpha7 and alpha3beta2 nAChRs, respectively. Design of novel toxins may help to better understand their subtype specificity. To address this problem, two chimeric toxins were produced by bacterial expression, a short-chain neurotoxin II Naja oxiana with the grafted disulfide-containing loop from long-chain neurotoxin I from N. oxiana, while a second chimera contained an additional A29K mutation, the most pronounced difference in the central loop tip between long-chain alpha-neurotoxins and kappa-neurotoxins. The correct folding and structural stability for both chimeras were shown by (1)H and (1)H-(15)N NMR spectroscopy. Electrophysiology experiments on the nAChRs expressed in Xenopus oocytes revealed that the first chimera and neurotoxin I blockalpha7 nAChRs with similar potency (IC(50) 6.1 and 34 nM, respectively). Therefore, the disulfide-confined loop endows neurotoxin II with full activity of long-chain alpha-neurotoxin and the C-terminal tail in neurotoxin I is not essential for binding. The A29K mutation of the chimera considerably diminished the affinity for alpha7 nAChR (IC(50) 126 nM) but did not convey activity at alpha3beta2 nAChRs. Docking of both chimeras toalpha7 andalpha3beta2 nAChRs was possible, but complexes with the latter were not stable at molecular dynamics simulations. Apparently, some other residues and dimeric organization of kappa-neurotoxins underlie their selectivity for alpha3beta2 nAChRs.  相似文献   

11.
This paper is an attempt to localize the critical area determining toxicity in a snake cardiotoxin. Toxin gamma is a single-chain polypeptide of 60 amino acids, which has been isolated from the venom of the African spitting cobra, Naja nigricollis. Three aromatic residues, namely, Trp-11, Tyr-22, and Tyr-51, have been individually modified by chemical means. The structure of the native toxin and of each derivative has been carefully investigated by circular dichroism, fluorescence, proton magnetic resonance spectroscopy, and two specific monoclonal antibodies. None of the chemical modifications alters the overall structure of the toxin, which in all cases remains folded into three adjacent loops (I, II, and III) rich in beta-pleated sheet emerging from a small globular region containing four disulfide bridges. A number of subtle changes, however, have been detected in the structure of each derivative compared with that of the native toxin. In particular, nitration of Tyr-51 provoked a structural perturbation in the globular region. Nitration of Tyr-22 induces a more substantial change in the beta-sheet area of the molecule. Thus, the strong inter-ring NOE that is observed in the native toxin between Tyr-22 and Tyr-51 vanishes in the Tyr-22 derivative, and significant changes are observed in the globular region. In contrast, no alteration of the beta-sheet structure of loops II and III has been detected after modification of Trp-11. All changes observed for this derivative remain located in the vicinity of the indole side chain of Trp-11 in loop I. The biological consequences of the modifications were measured: the lethal potency in vivo in mice and the cytotoxic activities in vitro on FL-cells. Lethal activities correlate with cytotoxicity: Tyr-51 modified toxin is equally potent as native toxin, whereas Tyr-22 and Trp-11 derivatized toxins are characterized by substantially lesser activities, the Trp-11 derivatized toxin being the least potent. We conclude that (1) Tyr-51 is not involved in the functional site of the toxin, although it is in interaction with the core of the molecule, (2) Tyr-22 may play a dual structural and functional role, and (3) Trp-11 is in, or in close proximity to, the functional site of the toxin. These data indicate the importance of loop I in determining toxicity of the cardiotoxin.  相似文献   

12.
We present a systematic structure comparison of three major classes of postsynaptic snake toxins, which include short and long chain alpha-type neurotoxins plus one angusticeps-type toxin of black mamba snake family. Two novel alpha-type neurotoxins isolated from Taiwan cobra (Naja naja atra) possessing distinct primary sequences and different postsynaptic neurotoxicities were taken as exemplars for short and long chain neurotoxins and compared with the major lethal short-chain neurotoxin in the same venom, i.e., cobrotoxin, based on the derived three-dimensional structure of this toxin in solution by NMR spectroscopy. A structure comparison among these two alpha-neurotoxins and angusticeps-type toxin (denoted as FS2) was carried out by the secondary-structure prediction together with computer homology-modeling based on multiple sequence alignment of their primary sequences and established NMR structures of cobrotoxin and FS2. It is of interest to find that upon pairwise superpositions of these modeled three-dimensional polypeptide chains, distinct differences in the overall peptide flexibility and interior microenvironment between these toxins can be detected along the three constituting polypeptide loops, which may reflect some intrinsic differences in the surface hydrophobicity of several hydrophobic peptide segments present on the surface loops of these toxin molecules as revealed by hydropathy profiles. Construction of a phylogenetic tree for these structurally related and functionally distinct toxins corroborates that all long and short toxins present in diverse snake families are evolutionarily related to each other, supposedly derived from an ancestral polypeptide by gene duplication and subsequent mutational substitutions leading to divergence of multiple three-loop toxin peptides.  相似文献   

13.
Disulfide-bound dimers of three-fingered toxins have been discovered in the Naja kaouthia cobra venom; that is, the homodimer of alpha-cobratoxin (a long-chain alpha-neurotoxin) and heterodimers formed by alpha-cobratoxin with different cytotoxins. According to circular dichroism measurements, toxins in dimers retain in general their three-fingered folding. The functionally important disulfide 26-30 in polypeptide loop II of alpha-cobratoxin moiety remains intact in both types of dimers. Biological activity studies showed that cytotoxins within dimers completely lose their cytotoxicity. However, the dimers retain most of the alpha-cobratoxin capacity to compete with alpha-bungarotoxin for binding to Torpedo and alpha7 nicotinic acetylcholine receptors (nAChRs) as well as to Lymnea stagnalis acetylcholine-binding protein. Electrophysiological experiments on neuronal nAChRs expressed in Xenopus oocytes have shown that alpha-cobratoxin dimer not only interacts with alpha7 nAChR but, in contrast to alpha-cobratoxin monomer, also blocks alpha3beta2 nAChR. In the latter activity it resembles kappa-bungarotoxin, a dimer with no disulfides between monomers. These results demonstrate that dimerization is essential for the interaction of three-fingered neurotoxins with heteromeric alpha3beta2 nAChRs.  相似文献   

14.
Insecticidal crystal (Cry) proteins produced by Bacillus thuringiensis (Bt) are widely used as environmentally friendly insecticides. As the only known Cry protein with insecticidal activity against Locusta migratoria manilensis, a locust subspecies that causes extensive destruction of crops, the Cry7Ca1 protein from Bt strain BTH‐13 identified in our previous study is of particular interest to locust prevention and control. However, the three‐dimensional structure of Cry7Ca1 toxin (the active form of the Cry7Ca1 protein) and the mechanisms of the Cry7Ca1 insecticidal specificity remain largely elusive. Here, we report a 2.3 Å crystal structure of the Cry7Ca1 toxin and carry out a systematic comparison of all available Cry toxins structures. A cluster of six loops in Cry toxin domain II, named Apex here, are the most variable structural elements and were documented to contribute in insecticidal specificity. The Cry7Ca1 toxin Apex loops are different from those of other Cry toxins in length, conformation, and sequence. Electrostatic potential analysis further revealed that Cry7Ca1 is the only structure‐available Cry toxin that does not have a high contrast of surface electrostatic potentials in the Apex. We further suggest that the L1/L2 loops in the center of the Cry7Ca1 Apex may be worthy of attention in future efforts to unravel the Cry7Ca1 insecticidal specificity as they exhibit unique features not found in the corresponding regions of other Cry toxins. Our work highlights the uniqueness of the Apex in the Cry7Ca1 toxin and may assist exploration of the insecticidal mechanism of the Cry7Ca1 against Locusta migratoria manilensis.  相似文献   

15.
Two toxins from the venom of Naja mossambica mossambica, neurotoxin I and cardiotoxin VII4, were investigated in aqueous solution by high-resolution 1H nuclear magnetic resonance (NMR) techniques at 360 MHz. The spectral characterization of the proteins included determination of the number of slowly exchanging amide protons which can be observed in 2H2O solution, measurement of the amide proton chemical shifts and exchange rates, characterization of the aromatic spin systems and the internal mobilities of aromatic rings, and studies of the pH dependence of the NMR spectra. For numerous resonances of labile and non-labile protons quite outstanding pH titration shifts were observed. It is suggested that these NMR parameters provide a useful basis for comparative structural studies of different proteins in the large group of homologous snake toxins. As a first application the NMR data presently available in the literature on neurotoxin II from Naja naja oxiana, toxin alpha from Naja nigricollis and erabutoxin a and b from Laticauda semifasciata have been used to compare these three proteins with neurotoxin I from Naja mossambica mossambica. This preliminary comparative study provides evidence that the same type of spatial structure prevails for these four homologous neurotoxins and that the folding of the backbone corresponds quite closely to that observed in the crystal structure of erabutoxin b. A second application is the comparison of cardiotoxin VII4 from Naja mossambica mossambica with the neurotoxins. The experimental data indicate that the folding of the polypeptide backbone is closely similar, but that the cardiotoxin molecule is markedly more flexible than the neurotoxins.  相似文献   

16.
A novel "weak toxin" (WTX) from Naja kaouthia snake venom competes with [(125)I]alpha-bungarotoxin for binding to the membrane-bound Torpedo californica acetylcholine receptor (AChR), with an IC(50) of approximately 2.2 microm. In this respect, it is approximately 300 times less potent than neurotoxin II from Naja oxiana and alpha-cobratoxin from N. kaouthia, representing short-type and long-type alpha-neurotoxins, respectively. WTX and alpha-cobratoxin displaced [(125)I]alpha-bungarotoxin from the Escherichia coli-expressed fusion protein containing the rat alpha7 AChR N-terminal domain 1-208 preceded by glutathione S-transferase with IC(50) values of 4.3 and 9.1 microm, respectively, whereas for neurotoxin II the IC(50) value was >100 microm. Micromolar concentrations of WTX inhibited acetylcholine-activated currents in Xenopus oocyte-expressed rat muscle AChR and human and rat alpha7 AChRs, inhibiting the latter most efficiently (IC(50) of approximately 8.3 microm). Thus, a virtually nontoxic "three-fingered" protein WTX, although differing from alpha-neurotoxins by an additional disulfide in the N-terminal loop, can be classified as a weak alpha-neurotoxin. It differs from the short chain alpha-neurotoxins, which potently block the muscle-type but not the alpha7 AChRs, and is closer to the long alpha-neurotoxins, which have comparable potency against the above-mentioned AChR types.  相似文献   

17.
CgNa (Condylactis gigantea neurotoxin) is a 47-amino-acid- residue toxin from the giant Caribbean sea anemone Condylactis gigantea. The structure of CgNa, which was solved by 1H-NMR spectroscopy, is somewhat atypical and displays significant homology with both type I and II anemone toxins. CgNa also displays a considerable number of exceptions to the canonical structural elements that are thought to be essential for the activity of this group of toxins. Furthermore, unique residues in CgNa define a characteristic structure with strong negatively charged surface patches. These patches disrupt a surface-exposed cluster of hydrophobic residues present in all anemone-derived toxins described to date. A thorough characterization by patch-clamp analysis using rat DRG (dorsal root ganglion) neurons indicated that CgNa preferentially binds to TTX-S (tetrodotoxin-sensitive) voltage-gated sodium channels in the resting state. This association increased the inactivation time constant and the rate of recovery from inactivation, inducing a significant shift in the steady state of inactivation curve to the left. The specific structural features of CgNa may explain its weaker inhibitory capacity when compared with the other type I and II anemone toxins.  相似文献   

18.
We determined the distances separating five functionally important residues (Gln(10), Lys(27), Trp(29), Arg(33), and Lys(47)) of a three-fingered snake neurotoxin from the reduced disulfide bond alpha(Cys(192)-Cys(193)) located at the alphagamma interface of the Torpedo nicotinic acetylcholine receptor. Each toxin position was substituted individually for a cysteine, which was then linked to a maleimido moiety through three different spacers, varying in length from 10 to 22 A. We estimated the coupling efficiency between the 15 toxin derivatives and the reduced cystine alpha(192-193) by gel densitometry of Coomassie Blue-stained gels. A nearly quantitative coupling was observed between alphaCys(192) and/or alphaCys(193) and all probes introduced at the tip of the first (position 10) and second (position 33) loops of Naja nigricollis alpha-neurotoxin. These data sufficed to locate the reactive thiolate in a "croissant-shaped" volume comprised between the first two loops of the toxin. The volume was further restrained by taking into account the absence or partial coupling of the other derivatives. Altogether, the data suggest that alphaCys(192) and/or alphaCys(193), at the alphagamma interface of a muscular-type acetylcholine receptor, is (are) located in a volume located between 11.5 and 15.5 A from the alpha-carbons at positions 10 and 33 of the toxin, under the tip of the toxin first loop and close to the second one.  相似文献   

19.
Cry4Ba, isolated from Bacillus thuringiensis subsp. israelensis, is specifically toxic to the larvae of Aedes and Anopheles mosquitoes. The structure of activated Cry4Ba toxin has been determined by multiple isomorphous replacement with anomalous scattering and refined to R(cryst) = 20.5% and R(free)= 21.8% at 1.75 Angstroms resolution. It resembles previously reported Cry toxin structures but shows the following distinctions. In domain I the helix bundle contains only the long and amphipathic helices alpha3-alpha7. The N-terminal helices alpha1-alpha2b, absent due to proteolysis during crystallisation, appear inessential to toxicity. In domain II the beta-sheet prism presents short apical loops without the beta-ribbon extension of inner strands, thus placing the receptor combining sites close to the sheets. In domain III the beta-sandwich contains a helical extension from the C-terminal strand beta23, which interacts with a beta-hairpin excursion from the edge of the outer sheet. The structure provides a rational explanation of recent mutagenesis and biophysical data on this toxin. Furthermore, added to earlier structures from the Cry toxin family, Cry4Ba completes a minimal structural database covering the Coleoptera, Lepidoptera, Diptera and Lepidoptera/Diptera specificity classes. A multiple structure alignment found that the Diptera-specific Cry4Ba is structurally more closely similar to the Lepidoptera-specific Cry1Aa than the Coleoptera-specific Cry3Aa, but most distantly related to Lepidoptera/Diptera-specific Cry2Aa. The structures are most divergent in domain II, supporting the suggestion that this domain has a major role in specificity determination. They are most similar in the alpha3-alpha7 major fragment of domain I, which contains the alpha4-alpha5 hairpin crucial to pore formation. The collective knowledge of Cry toxin structure and mutagenesis data will lead to a more critical understanding of the structural basis for receptor binding and pore formation, as well as allowing the scope of diversity to be better appreciated.  相似文献   

20.
Hibbs RE  Johnson DA  Shi J  Hansen SB  Taylor P 《Biochemistry》2005,44(50):16602-16611
The three-fingered alpha-neurotoxins have played a pivotal role in elucidating the structure and function of the muscle-type and neuronal alpha7 nicotinic acetylcholine receptors (nAChRs). To advance our understanding of the alpha-neurotoxin-nAChR interaction, we examined the flexibility of alpha-neurotoxin bound to the acetylcholine-binding protein (AChBP), which shares structural similarity and sequence identities with the extracellular domain of nAChRs. Because the crystal structure of five alpha-cobratoxin molecules bound to AChBP shows the toxins projecting radially like propeller "blades" from the perimeter of the donut-shaped AChBP, the toxin molecules should increase the frictional resistance and thereby alter the hydrodynamic properties of the complex. alpha-Bungarotoxin binding had little effect on the frictional coefficients of AChBP measured by analytical ultracentrifugation, suggesting that the bound toxins are flexible. To support this conclusion, we measured the anisotropy decay of four site-specifically labeled alpha-cobratoxins (conjugated at positions Lys(23), Lys(35), Lys(49), and Lys(69)) bound to AChBP and free in solution and compared their anisotropy decay properties with fluorescently labeled cysteine mutants of AChBP. The results indicated that the core of the toxin molecule is relatively flexible when bound to AChBP. When hydrodynamic and anisotropy decay analyses are taken together, they establish that only one face of the second loop of the alpha-neurotoxin is immobilized significantly by its binding. The results indicate that bound alpha-neurotoxin is not rigidly oriented on the surface of AChBP but rather exhibits segmental motion by virtue of flexibility in its fingerlike structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号