首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
对虾白斑综合症病毒重组cDNA克隆的构建与分析   总被引:3,自引:1,他引:3  
取经人工注射感染了对虾白班综合症病毒40-45h的凡纳对虾鳃组织,分离mRNA,以mRNA为模板合成双链cDNA,并克隆于PUC质粒的Not I/Sal I位点,构建了1000余株对虾感染后期鳃细胞的重组cDNA克隆,重组质粒经PCR鉴定插入片段,DNA斑点杂交分析目的片段,测定了20株对虾白斑综合症病毒的重组cDNA克隆的末端DNA序列,并对其进行了包含存在的开放阅读框架,启动区上游序列、编码产物的特性等分析。结果显示,PCR产物在0.3-1.6kb之间;大于1kb的克隆中有31.8%的克隆为白斑综合症病毒的重组cDNA克隆。已测序的不包含同源序列的13株克隆中含有14个开放阅读框,其中11个上游可检出启动子基序,4个可检出启动子调制元件,ORF转译产物的特性基序分析显示,有2个ORFs可检出锌指基序,3个ORFs可检出亮氮酸拉链基序,2个ORFs可检出NTP结合基序,未检定核定位信号基序。  相似文献   

2.
对虾白斑综合症病毒)White Spot Syndrome Virus,WSSV)是一种无包含体、具囊膜、杆状的双链DNA病毒 ,其全基因组序列为 300kb左右 ,是目前已知的基因组最大的动物病毒之一1,2.该病毒的基因组结构非常特殊 ,与已知的病毒的基因组相差很远 ,拥有许多该病毒特有的基因 ,很可能为一种新的病毒科成员 ,其分类地位待于进一步研究。从已经登记到GenBank1的对虾白斑综合症病毒全序列知道 ,该病毒存在着至少两种不同的分离株 ,但基因组序列非常保守。本文报道该病毒的一个基因序列的分析结果以及三个不同的白斑综合症病毒分离株的同源基因片段序列的比较结果。    相似文献   

3.
根据GenBank上WSSV囊膜蛋白基因vp28的序列,设计并合成引物,PCR扩增得到vp28基因,成功构建重组表达载体pET22b-vp28并转化大肠杆菌BL21(DE3).基因工程菌株37℃IPTG诱导,表达产物经Western-blot和SDS-PAGE检测显示有与预期大小32kDa相符合的目的蛋白.用Ni2+-柱纯化的目的蛋白分别直接注射螯虾和包被饲料投喂螯虾,实验结果表明vp28在大肠杆菌中的表达产物有显著提高虾体抗WSSV感染力的作用,而且注射效果更好.  相似文献   

4.
对虾白斑综合症病毒(white spot syndrome virus,WSSV)是危害对虾养殖业的主要病原之一。WSSV在侵染宿主细胞的过程中,极早期基因(immediate-early gene)对病毒复制增殖起着非常重要的作用。在这个过程中,一方面极早期基因编码的蛋白通过与细胞调控因子相互作用,调节细胞信号通路,为病毒的增殖提供更合适的环境;另一方面,极早期蛋白直接调控病毒基因的转录和表达。综述列举了WSSV的21个极早期基因,并将重点介绍其中5个研究比较深入的基因:ie1、wsv051、wsv083、wsv249和wsv403。  相似文献   

5.
根据GenBank上WSSV囊膜蛋白基因vp28的序列,设计并合成引物,PCR扩增得到vp28基因,成功构建重组表达载体pET22b-vp28并转化大肠杆菌BL21(DE3)。基因工程菌株37℃IPTG诱导,表达产物经Western-blot和SDS-PAGE检测显示有与预期大小32kDa相符合的目的蛋白。用Ni2 -柱纯化的目的蛋白分别直接注射螯虾和包被饲料投喂螯虾,实验结果表明vp28在大肠杆菌中的表达产物有显著提高虾体抗WSSV感染力的作用,而且注射效果更好。  相似文献   

6.
白斑综合症病毒与对虾血淋巴细胞的体外结合实验   总被引:2,自引:2,他引:0  
通过差速离心和蔗糖密度梯度离心,从感染了白斑综合症病毒(WSSV)的病虾头胸部分离了WSSV,利用地高辛对病毒蛋白进行了标记(DIG-WSSV),以体外培养的对虾血淋巴细胞为吸附基底,观察和分析了病毒与细胞间的结合现象及特性。以NBT/BCIP为酶反应显色底物观察到在细胞周围形成许多暗紫色颗粒,证实病毒与细胞间存在着稳定的结合。以OPD为酶反应显色底物分析了结合反应的特性:当DIG-WSSV维持恒定值时,随着血淋巴细胞数量的增加结合显色增强,细胞数量达到1.2104cells/孔,492nm处的吸光值达到饱和;当血淋巴细胞数量维持恒定值时,随着DIG-WSSV蛋白含量的增加显色增强,且在DIG-WSSV的蛋白浓度达到4g/孔时,492nm处的吸光值达到饱和;未标记WSSV可竞争抑制血淋巴细胞与DIG-WSSV间的结合作用。进一步的研究得出:4℃下,随着结合时间的延长显色增强,但继续延长结合时间显色反而减弱;缓冲液的渗透压对结合结果影响甚微,而酸性条件利于病毒与细胞间的结合。37℃孵育对病毒结合活性影响不大,55℃和70℃孵育可显著影响病毒的结合活性;短时间超声波处理病毒可增加病毒结合能力,长时间超声波处理可破坏病毒结合能力;有机溶剂处理同样可破坏病毒结合能力,其中尤以氯仿/甲醇的处理更为激烈;不同的去垢剂对病毒结合活性的影响结果不同:SDS和脱氧胆酸钠可以降低病毒的结合活性,而Triton X-100和NP-40可以提高病毒的结合活性。    相似文献   

7.
对虾白斑综合症病毒(White spot syndrome virus,WSSV)是养殖对虾的一个主要病原,也是目前发现的基因组最大的动物病毒(基因组约290kDa,双链环状)。WSSV病毒粒子为卵形杆状,外被囊膜,囊膜在尾部延伸成一长尾。它不仅能感染对虾,还能感染其它淡水及海水甲壳类。养殖对虾被感染后,3—10d内累积死亡率可达100%,给对虾养  相似文献   

8.
根据GenBank上WSSV囊膜蛋白基因vp 19的序列,设计并合成引物,PCR扩增得到vp19基因并克隆到pGEM‐T载体中,经过BamHⅠ/Hind Ⅲ酶切、连接并将vp19插入到pET32b表达载体中.用重组质粒pET32b-vp19转化大肠杆菌Origami(DE3)pLysS,在IPTG诱导下,融合蛋白Trx-VP19以可溶性的形式得到表达,经SDS-PAGE和Western-blot检测显示其分子量与预期的大小相符合.目的蛋白经Ni2+柱纯化并定量后分别直接注射鳌虾和包被饲料投喂鳌虾.实验结果表明注射Trx-VP19可以提高鳌虾个体抗WSSV感染力的作用.  相似文献   

9.
用噬菌体展示技术制备了抗对虾白斑综合症病毒(WSSV)的单链抗体A1。该抗体在30℃培养条件下诱导表达20h后,其蛋白表达量可达总菌体蛋白的3.67%。用亲和层析柱和SephadexG-100层析柱可将单链抗体A1纯化为一条单电泳条带,其分子量约为31.5kD。用等电聚焦电泳测定,其等电点为pH5.8。ELISA测定表明冻干的单链抗体A1在室温储藏4年后与WSSV结合仍具有较高的活力。    相似文献   

10.
VP60B是对虾白斑综合症病毒(WSSV)中含量很少的一个结构蛋白。VP60B的一段序列与腺病毒纤维蛋白(Adenovirus type 5 fiber protein)的knob domain的一段序列具有同源性。本试验将VP60B基因克隆到原核表达系统中,在低温条件下,诱导了VP60B蛋白的表达。结果显示VP60B在该系统主要是以包含体的形式存在。原核表达的VP60B不能被鼠抗WSSV多克隆血清所识别,预示该蛋白的免疫原性较弱。通过对VP60B氨基酸序列的分析,发现有一个跨膜区,这预示着该蛋白可能位于WSSV病毒的囊膜上。  相似文献   

11.
The envelope proteins of White spot syndrome virus (WSSV) are very fragile and easy to be destroyed during purification. It was difficult to obtain a large quantity of intact virions by routine sucrose gradient centrifugation. After modifying the sucrose gradient by adding citrate sodium, we can obtain a large quantity of intact virions and nucleocapsids. This purified virions and nucleocapsids were subsequently used for analyzing viral structural proteins and DNA extraction. The result showed that this modified techniaue is very efficient for virus purification.  相似文献   

12.
To test the possibility that shrimp pond rotifer resting eggs and hatched rotifers could transmit white spot syndrome virus (WSSV) to crayfish (Procambarus clarkii), we injected crayfish with rotifer and resting egg inocula that were WSSV-positive only by dot-blot analysis of PCR products. No crayfish became WSSV-positive after challenge with the resting egg inoculum. However, 1/15 crayfish became WSSV-positive after challenge with the rotifer inoculum. The results demonstrated that rotifers constitute a potential risk for WSSV transmission to crayfish and other cultivated crustaceans. However, the actual quantitative risk of transmission in an aquaculture setting depends on many variables that remain untested.  相似文献   

13.
BALB/c mice were immunized with purified White spot syndrome virus (WSSV). Six monoclonal antibody cell lines were selected by ELISA with VP28 protein expressed in E. coli. in vitro neutralization experiments showed that 4 of them could inhibit the virus infection in crayfish. Western-blot suggested that all these monoclonal antibodies were against the conformational structure of VP28. The monoclonal antibody 7B4 was labeled with colloidal gold particles and used to locate the VP28 on virus envelope by immunogold labeling. These monoclonal antibodies could be used to develop immunological diagnosis methods for WSSV infection.  相似文献   

14.
在对虾白斑综合征病毒(White spot syndrome virus,WSSV)的基因组中发现一个具有细胞因子受体特征的开放阅读框,该阅读框全长2022个核苷酸,编码674个氨基酸,蛋白质理论分子量为76kDa。该基因含有真核生物细胞因子gp130受体特征序列。为了研究该基因的功能,采用PCR方法从病毒基因组中扩增出基因片段,克隆到pGEM-T Easy载体中,经BamH I和Sal I双酶切后插入pET28b表达载体中。重组质粒转化到大肠杆菌BL21中,IPTG诱导后,经SDS-PAGE电泳表明在。76kDa处有目的蛋白表达。用冰浴超声波对诱导后的菌液进行处理以获得初步纯化的蛋白,作为抗原人工免疫实验兔子以获得含特异性抗体的抗血清。该基因的表达成功,为其功能的进一步深入研究奠定了基础。  相似文献   

15.
White spot syndrome virus (WSSV), a unique member within the virus family Nimaviridae, is the most notorious aquatic virus infecting shrimp and other crustaceans and has caused enormous economic losses in the shrimp farming industry worldwide. Therefore, a comprehensive understanding of WSSV morphogenesis, structural proteins, and replication is essential for developing prevention measures of this serious parasite. The viral genome is approximately 300kb and contains more than 180 open reading frames (ORF). However, most of proteins encoded by these ORF have not been characterized. Due to the importance of WSSV structural proteins in the composition of the virion structure, infection process and interaction with host cells, knowledge of structural proteins is essential to understanding WSSV entry and infection as well as for exploring effective prevention measures. This review article summarizes mainly current investigations on WSSV structural proteins including the relative quantities, localization, function and protein-protein interactions. Traditional proteomic studies of 1D or 2D gel electrophoresis separations and mass spectrometry (MS) followed by database searches have identified a total of 39 structural proteins. Shotgun proteomics and iTRAQ were initiated to identify more structural proteins. To date, it is estimated that WSSV is assembled by at least 59 structural proteins, among them 35 are defined as the envelope fraction (including tegument proteins) and 9 as nucleocapsid proteins. Furthermore, the interaction within several major structural proteins has also been investigated. This identitification and characterization of WSSV protein components should help in the understanding of the viral assembly process and elucidate the roles of several major structural proteins.  相似文献   

16.
A total of 173 bacterial strains were isolated from different sources at different regions such as fermented foods, shrimp guts, sea water, mangrove water, and sediments. These bacteria were screened against white spot syndrome virus (WSSV) infection in Palaemon paucidens. Based on mortality, white spot level, and healthiness, three bacterial strains were selected and identified using 16S rRNA gene sequencing. These bacterial strains were Bacillus subtilis KA1, B. licheniformis KA2, and B. subtilis KA3. WSSV challenge test in pilot scale was conducted using Litopenaeus vannamei with B. subtilis KA1 and B. subtilis KA3. The survival ratio of shrimp was 0% for WSSV control after 17th days, 84% for B. subtilis KA1 plus WSSV after 26th days, and 28% for B. subtilis KA3 with WSSV after 26th days. B. subtilis KA1 showed good growth at 18–37 °C in with and without 3% NaCl, and therefore can be applied to aquaculture at low to high temperatures. B. subtilis KA1 produced protease and lipase which can increase digestion to shrimp; exhibited antibacterial activity against Vibrio parahaemolyticus; and significantly increased the survival of WSSV challenged shrimps.  相似文献   

17.
Suzuki H  Tamai N  Habu Y  Chang MO  Takaku H 《FEBS letters》2008,582(20):3085-3089
Short-hairpin RNAs (shRNAs) inhibit gene expression by RNA interference. Here, we report on the inhibition, by baculovirus-based vector-derived shRNAs, of core-protein expression in full-length hepatitis C virus (HCV) replicon cells. shRNAs were designed to target the highly conserved core region of the HCV genome. In particular, the core-shRNA452 containing nucleotides 452-472, as the target in the HCV core gene, dramatically inhibited the expression of the HCV core protein in replicon cells. Furthermore, HCV core-protein expression was inhibited more strongly by the vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped baculovirus vector than by the wild-type baculovirus vector.  相似文献   

18.
近年来 ,我国学者对人工养殖对虾暴发性病毒病的病原进行了较为系统的研究[1~ 5] ,本试验应用螯虾这一动物模型[6] ,利用斑点杂交方法 ,研究了白斑综合征病毒 (WSSV ,前称无包埋体对虾病毒Non -Occluded -ShrimpVirusNOSV )青岛株在螯虾体内的动态分布 ,为研究该病毒的传播途径、增殖致病机理提供了参考。1 材料与方法1.1 实验动物克氏原螯虾 (Cambarusproclarkii ,以下简称螯虾 ) 40尾 ,购自南京某农贸市场 ,实验室饲养一周以上 ,健康存活。1.2 种毒处理及接种白斑综合征病毒青岛株 (…  相似文献   

19.
We studied the possible role that marine microalgae may play during the outbreaks of WSS (white spot syndrome). In order to elucidate the possibility of marine microalgae carrying WSSV (white spot syndrome virus), six marine microalgae (Isochrysis galbana, Skeletonema costatum, Chlorella sp., Heterosigma akashiwo, Scrippsiella trochoidea, Dunaliella salina) were co-cultured with adult Marsupenaeus japonicus infected with WSSV and were assayed daily by nested-PCR to study whether they could carry WSSV. Further experiments were conducted to investigate whether the virus carried by microalgae could re-infect juvenile M. japonicus. Results showed that all of the experimental microalgae, except H. akashiwo could carry WSSV, and among them, Chlorella sp. and S. trochoidea had the strongest WSSV-carrying ability. Unlike other invertebrate carriers of WSSV, the WSSV detections in microalgae, which were positive after 1 and 3 days, were negative after 10days of incubation. WSSV detection results in juvenile M. japonicus showed that the juvenile shrimp were re-infected by co-cultured Chlorella sp., although the juvenile M. japonicus carried so small an amount of WSSV that it could only be detected by nested-PCR. The results of this experiment suggest that microalgae might be one possible horizontal transmission pathway for WSSV. Further research, however, is required to better understand the factors behind the different carrying abilities and virus-carrying mechanisms of different microalgae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号