首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chicken immunoglobulin light-chain gene (IgL) encodes only a single variable gene segment capable of recombination. To generate an immune repertoire, chickens diversify this unique rearranged VL gene segment during B-cell development in the bursa of Fabricius. Sequence analysis of IgL cDNAs suggests that both gene conversion events derived from VL segment pseudogene templates (psi VL) and non-template-derived single-base-pair substitutions contribute to this diversity. To facilitate the study of postrecombinational mechanisms of immunoglobulin gene diversification, avian B-cell lines were examined for the ability to diversify their rearranged IgL gene during in vitro passage. One line that retains this ability, the avian leukosis virus-induced bursal lymphoma cell line DT40, has been identified. After passage for 1 year in culture, 39 of 51 randomly sequenced rearranged V-J segments from a DT40 population defined novel subclones of the parental tumor. All cloned V-J segments displayed the same V-J joint, confirming that the observed diversity arose after V-J rearrangement. Most sequence variations that we observed (203 of 220 base pairs) appeared to result from psi VL-derived gene conversion events; 16 of the 17 novel single nucleotide substitutions were transitions. Based on these data, it appears that immunoglobulin diversification during in vitro passage of DT40 cells is representative of the diversification that occurs during normal B-cell development in the bursa of Fabricius.  相似文献   

2.
C A Reynaud  A Dahan  V Anquez  J C Weill 《Cell》1989,59(1):171-183
The chicken heavy chain locus contains a single JH segment and a unique functional VH gene (VH1) 15 kb upstream, with approximately 15 D elements in between. A cluster of pseudogenes (psi VH) spans 60-80 kb, starting 7 kb upstream from VH1, with an average density of one pseudogene per 0.85 kb and an almost systematic alternation of polarity. Diversification of the unique rearranged VH1 gene takes place during bursal ontogeny by the same hyperconversion mechanism that was described for the chicken light chain, with psi VH segments acting as donors. The hyperconversion mechanism also operates within the D region, as all pseudogenes analyzed are fused VD elements; this D region possesses distinct characteristics, allowing higher combinatorial possibilities in the gene conversion process. Allelic exclusion appears to be performed by restriction of a complete VDJ rearrangement to a single allele.  相似文献   

3.
The 12-member beta-globin gene locus of the goat contains three beta(adult)-type pseudogenes, one in each of three four-gene subsets of the locus. We have determined the complete nucleotide sequence of psi beta y, the pseudogene present in the most downstream four-gene subset, which also contains the functional fetal gene, beta F. psi beta y contains, throughout its length, numerous incapacitating mutations in common with the previously sequenced goat psi beta x and psi beta z pseudogenes consistent with the model that all were descended from a common pseudogene ancestor which became defective prior to the expansion of the beta-globin locus in the goat lineage. Evolutionary analysis of the psi beta y sequence in comparison to psi beta x and psi beta z provides evidence that nucleotide substitutions were fixed in a random manner within these pseudogenes with respect to polarity, coding versus non-coding regions, and replacement sites versus silent sites. However, substitutions appear to have accumulated asymmetrically between different pseudogenes in a manner that provides evidence for partial gene conversion. Moreover, the presence of deletions in goat psi beta y, which are also observed in the cow pseudogene psi 2, but not in the cow psi 1 pseudogene, indicate that goat psi beta y and cow psi 2 are orthologous but cow psi 1 actually arose prior to the goat/cow divergence. The authentic goat orthologue to cow psi 1 temporarily existed in the goat lineage but was deleted, probably prior to the divergence of goats and sheep.  相似文献   

4.
5.
Guo Y  Bao Y  Meng Q  Hu X  Meng Q  Ren L  Li N  Zhao Y 《PloS one》2012,7(6):e39298
In science, the guinea pig is known as one of the gold standards for modeling human disease. It is especially important as a molecular and cellular biology model for studying the human immune system, as its immunological genes are more similar to human genes than are those of mice. The utility of the guinea pig as a model organism can be further enhanced by further characterization of the genes encoding components of the immune system. Here, we report the genomic organization of the guinea pig immunoglobulin (Ig) heavy and light chain genes. The guinea pig IgH locus is located in genomic scaffolds 54 and 75, and spans approximately 6,480 kb. 507 V(H) segments (94 potentially functional genes and 413 pseudogenes), 41 D(H) segments, six J(H) segments, four constant region genes (μ, γ, ε, and α), and one reverse δ remnant fragment were identified within the two scaffolds. Many V(H) pseudogenes were found within the guinea pig, and likely constituted a potential donor pool for gene conversion during evolution. The Igκ locus mapped to a 4,029 kb region of scaffold 37 and 24 is composed of 349 V(κ) (111 potentially functional genes and 238 pseudogenes), three J(κ) and one C(κ) genes. The Igλ locus spans 1,642 kb in scaffold 4 and consists of 142 V(λ) (58 potentially functional genes and 84 pseudogenes) and 11 J(λ) -C(λ) clusters. Phylogenetic analysis suggested the guinea pig's large germline V(H) gene segments appear to form limited gene families. Therefore, this species may generate antibody diversity via a gene conversion-like mechanism associated with its pseudogene reserves.  相似文献   

6.
Conservation and divergence of immunoglobulin VH pseudogenes.   总被引:11,自引:3,他引:8       下载免费PDF全文
J B Cohen  D Givol 《The EMBO journal》1983,2(10):1795-1800
The 12 immunoglobulin VH pseudogenes, that have been characterized to date, differ from most pseudogenes of other multigene families in two aspects: (i) they carry only one (11 cases) or at the most two (1 case) deleterious mutations and (ii) they show no evidence of increased divergence from intact VH genes. We describe here the first immunoglobulin VH pseudogene that does not have these characteristics. This pseudogene accumulated numerous deleterious mutations and diverged considerably from other genes of the VH gene family to which it belongs. In possible contrast to the other VH pseudogenes, this pseudogene seems to be selectively neutral. We discuss the implications of the characterization of this diverged VH pseudogene in relation to our understanding of the genetic mechanisms that generate diversity among germline immunoglobulin VH genes.  相似文献   

7.
C B Thompson  P E Neiman 《Cell》1987,48(3):369-378
Previous studies have shown that the chicken lambda immunoglobulin light chain gene undergoes a single rearrangement that results in functional VJ joining of the unique variable (V lambda 1) and joining (J lambda) coding regions. The immunologic repertoire of lambda genes is created through extensive sequence diversification within the rearranged locus during B cell development in the bursa of Fabricius. This sequence diversification was detected only at the rearranged V lambda 1 segment and not within the 5' leader sequence, the J lambda segment, or the unrearranged V lambda 1 segment. The selective diversification of the rearranged V lambda 1 segment was associated with unique DNAase I-hypersensitive sites on the rearranged allele. While probes for V lambda 1 sequences detect multiple homologous V lambda segments, probes for both the 5' leader and J lambda segments fail to detect homologous sequences. Taken together, these results suggest that a highly selective process, possibly gene conversion, operates during B cell ontogeny to generate diversity within the lambda gene.  相似文献   

8.
Evolution of immunoglobulin VH pseudogenes in chickens   总被引:5,自引:0,他引:5  
In chickens, there is a single functional gene (VH1) coding for the heavy chain variable region of immunoglobulins, and immunoglobulin diversity is generated by gene conversion of the VH1 gene by many variable region pseudogenes (psi VH's) that exist on the 5' side of the VH1 gene. To understand the evolution of this unique genetic system, we conducted statistical analyses of VH1 and psi VH genes together with functional VH genes from other higher vertebrate species. The results indicate, first, that chicken VH genes are all closely related to one another and were derived relatively recently from an ancestral gene belonging to one of the three major groups of VH genes in higher vertebrates. Second, the rate of nonsynonymous substitution is slightly higher than that of synonymous substitution in the complementarity- determining regions (CDRs), which suggests that diversity-enhancing selection has operated in the CDRs even for pseudogenes. However, both the rates of synonymous and nonsynonymous substitution are higher in the CDRs than in the framework regions (FRs), apparently because of an interaction between positive selection and meiotic gene conversion in the CDRs. Third, a dot matrix analysis of the psi VH genes and genomic diversity (D) genes has indicated that the 3' end of psi VH genes is attached by D-gene-like sequences, and this region of psi VH genes has high similarity with D gene sequences. This suggests that V and D genes were fused at some point of evolutionary time and this fused element multiplied by gene duplication. Finally, two alternative hypotheses of explaining the evolution of the chicken VH gene system are presented.   相似文献   

9.
The major source of immunoglobulin diversity is variation in DNA sequence among multiple copies of variable region (V) genes of the heavy- and light-chain multigene families. In order to clarify the evolutionary pattern of the multigene family of immunoglobulin light kappa chain V region (V kappa) genes, phylogenetic analyses of V kappa genes from humans and other vertebrate species were conducted. The results obtained indicate that the V kappa genes so far sequenced can be grouped into three major monophyletic clusters, the cartilaginous fish, bony fish and amphibian, and mammalian clusters, and that the cartilaginous fish cluster first separated from the rest of the V kappa genes and then the remaining two clusters diverged. The mammalian V kappa genes can further be divided into 10 V kappa groups, 7 of which are present in the human genome. Human and mouse V kappa genes from different V kappa groups are intermingled rather than clustered on the chromosome, and there are a large number of pseudogenes scattered on the chromosome. This indicates that the chromosomal locations of V kappa genes have been shuffled many times by gene duplication, deletion, and transposition in the evolutionary process and that many genes have become nonfunctional during this process. This mode of evolution is consistent with the model of birth-and-death evolution rather than with the model of concerted evolution. An analysis of duplicate V kappa functional genes and pseudogenes in the human genome has indicated that pseudogenes evolve faster than functional genes but that the rate of nonsynonymous nucleotide substitution in the complementarity-determining regions of V kappa genes has been enhanced by positive Darwinian selection.   相似文献   

10.
C A Reynaud  V Anquez  H Grimal  J C Weill 《Cell》1987,48(3):379-388
The chicken immunoglobulin light chain repertoire has been shown to be entirely derived from a single V lambda 1-J rearranged combination. The complete coding information of the lambda locus was determined: it comprises 25 V-hybridizing elements, all of which are pseudogenes, clustered in both orientations within 19 kb of DNA, starting 2.4 kb upstream of the V lambda 1 gene. Sequences of somatically rearranged V lambda 1 genes from embryonic and posthatching bursal cells show that diversification of light chain sequences occurs during ontogeny by a segmental gene conversion mechanism which takes place at a frequency of 0.05-0.1 per cell generation between the pseudogene pool and the unique rearranged functional V gene.  相似文献   

11.
An 80,000 base-pair region from the gene locus encoding the variable regions of the human immunoglobulins of the kappa type (V kappa genes) was cloned and analysed. The region comprises five V kappa sequences of subgroup I and one interspersed V kappa pseudogene of subgroup II. The six genes and pseudogenes are arranged at different distances but in the same orientation. The organization of the cluster can be explained by a series of amplification steps; the existence of a V kappa II pseudogene in a V kappa I gene cluster may have been the result of a transposition event; a final duplication step led to a second closely related copy of the cluster. From sequence data for altogether 16,000 base-pairs it appears that gene conversion-like events and subsequent selection contribute to both homogeneity and diversity of the V kappa repertoire.  相似文献   

12.
13.
Bacterial pathogens in the genus Anaplasma generate surface coat variants by gene conversion of chromosomal pseudogenes into single-expression sites. These pseudogenes encode unique surface-exposed hypervariable regions flanked by conserved domains, which are identical to the expression site flanking domains. In addition, Anaplasma marginale generates variants by recombination of oligonucleotide segments derived from the pseudogenes into the existing expression site copy, resulting in a combinatorial increase in variant diversity. Using the A. marginale genome sequence to track the origin of sequences recombined into the msp2 expression site, we demonstrated that the complexity of the expressed msp2 increases during infection, reflecting a shift from recombination of the complete hypervariable region of a given pseudogene to complex mosaics with segments derived from hypervariable regions of different pseudogenes. Examination of the complete set of 1183 variants with segmental changes revealed that 99% could be explained by one of the recombination sites occurring in the conserved flanking domains and the other within the hypervariable region. Consequently, we propose an 'anchoring' model for segmental gene conversion whereby the conserved flanking sequences tightly align and anchor the expression site sequence to the pseudogene. Associated with the recombination sites were deletions, insertions and substitutions; however, these are a relatively minor contribution to variant generation as these occurred in less than 2% of the variants. Importantly, the anchoring model, which can account for more variants than a strict segmental sequence identity mechanism, is consistent with the number of msp2 variants predicted and empirically identified during persistent infection.  相似文献   

14.
Processed pseudogenes arise via unimolecular events that result in the integration of nonfunctional (and therefore non-selected) regions of DNA into the germ line. The sequence of such pseudogenes can be used as a novel form of evolutionary clock: the older a particular pseudogene, the more mutations it has acquired relative to the selectively constrained functional gene from which it was originally derived. We have used specific beta-tubulin gene probes to assay for the presence of fully sequenced processed pseudogenes in genomic DNA from various hominoid species. The data suggest that orangutan is more closely related to human, chimpanzee and gorilla than is generally believed.  相似文献   

15.
In phylogenetic reconstructions by the parsimony method, utilizing 62 sequenced globin genes and pseudogenes (including 34 of the beta-globin gene family from eutherian orders Primates, Lagomorpha, Artiodactyla and Rodentia), the branch of primate psi beta pseudogenes and the goat embryonically expressed epsilon II gene group monophyletically together as orthologues of a common ancestral gene (labelled eta) distinct from orthologues of epsilon, gamma, delta and beta. This primate psi eta-goat eta branch is cladistically closer to epsilon and gamma than to delta and beta branches. In each eutherian order gene conversions replaced portions of delta by beta sequences, whereas in descent of Primates epsilon, gamma and eta mostly retained their separate ancient identities predating the radiation of Eutheria in all their exons and non-coding regions. The loci of the ancestral beta-globin gene cluster in basal eutherians and proto-primates, as deduced from beta-clusters representing the four eutherian orders, were linked 5'-epsilon-gamma-eta-delta-beta-3' with epsilon, gamma and eta being embryonically expressed genes, and delta and beta ontogenetically later expressed genes. Through deletions gamma was lost in artiodactyl evolution, eta in lagomorph and rodent evolution, and all DNA between exon 2 3' boundaries of eta and delta in prosimian lemuriform evolution (lemur having the hybrid pseudogene psi eta delta). Simian primates retained intact the five loci of the ancestral cluster. Not only did eta, after it became a pseudogene in the basal primates, persist intact in descent to present-day simians but in the line to hominoids it evolved during the last 40 million years at the decelerated rate of 1 X 10(-9) substitutions/site per year which is one-fifth the expected neutral rate. The possibility is suggested that the psi eta locus situated between fetal and adult chromosomal domains of the simian beta-globin gene cluster might play some role in a mechanism for ontogenetic switches of globin gene expression. However, not enough sequence data on genes and intergenic regions in DNA of species of primates and other mammals as yet exist to know if the slow rate of 1 X 10(-9) reflects the rate of a conserved functional gene or primarily reflects a decelerated neutral rate of hominoid DNA evolution, conceivably from enhanced DNA repair and longer generation times in hominoids. The further possibility is raised that gene correction (repair of damaged DNA that prevents emergence of new alleles) and gene conversion both more often involve strand copying of conserved than of rapidly evolving DNA.  相似文献   

16.
17.
18.
More than 100 variable (V), 27 diversity (D), and six joining (J) genes are encoded in the human heavy chain locus, and many of these genes exists in different allelic forms. The number of genes and the allelic differences help to create diversity in the immunoglobulin receptors, a key feature of the adaptive immune system. We here report the identification of two novel and seemingly functional alleles of human heavy chain genes. The variable IGHV3-23*04 allele is found with an allele frequency of 0.21 amongst Danish Caucasians, whereas the novel joining IGHJ6*04 allele is rare (allele frequency 0.02). We also report the full sequence of IGHV3-h. The gene exists in two allelic forms but is only found in 58% of the Danish Caucasians studied. The methionine translation initiation codon is mutated, ATG→AAG, and we therefore propose that the gene is a pseudogene incapable of being translated.  相似文献   

19.
We have isolated 23 different cosmid clones of the heavy-chain variable region genes (VH) of human immunoglobulin. These clones encompass about 1000 X 10(3) base-pairs of DNA containing 61 VH genes. Characterization of the 23 clones by Southern blot hybridization showed that VH genes belonging to different families were physically linked in many regions. Cluster 71, which was analyzed in detail, comprised seven VH segments arranged in the same orientation with different intervals. This clone contained internal homology regions, each carrying two VH segments of different families. Comparison of the nucleotide sequences of VH segments within each family showed that profiles of accumulation of mutations in framework (FR) and complementarity-determining (CDR) regions were different. CDR had more mutations at amino-acid-substituting positions than at silent positions, whereas FR had the reverse distribution of mutations. Five out of seven VH segments of this cluster were pseudogenes containing various mutations. VH pseudogenes were classified into two distinct groups; one with a few replacement mutations (conserved pseudogenes), and the other with rather extensive mutations (diverged pseudogenes). The possibility that conserved pseudogenes serve as a reservoir of VH segments is discussed.  相似文献   

20.
The primate psi beta 1 gene. An ancient beta-globin pseudogene   总被引:4,自引:0,他引:4  
The human beta-globin gene cluster contains five functional genes plus a single pseudogene termed psi beta 1. Hybridization and comparative sequence analysis show that this pseudogene is not the product of a recent gene duplication, but is ancient and has been maintained in all major primate groups ranging from prosimians to anthropoids, at the same position as in man, between gamma- and delta-globin genes. In the lemur, a prosimian, the central exons of the psi beta 1 and delta-globin genes have undergone an unequal exchange, which has resulted in a contraction of the beta-globin gene cluster and the formation of a Lepore-type psi beta 1-delta globin pseudogene. Comparisons of defects shared by prosimian, New World monkey and human psi beta 1 sequences suggest that the ancestral primate gene was probably a pseudogene with an abnormal initiation codon but few if any additional defects, and that most contemporary pseudogene defects were accumulated relatively recently by slow neutral drift. We suggest that psi beta 1 arose early in primate evolution by silencing of a pre-existing discrete functional gene, and show that psi beta 1-related sequences are also present in other mammalian orders. In view of the antiquity of psi beta 1-related sequences, we propose that this gene be renamed the eta-globin gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号