首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the functions of rice homologues of the Arabidopsisflowering-time gene CONSTANS (CO) and salt-tolerance gene STO,we performed a similarity search of the single-run sequencedata of cDNA clones accumulated by the Rice Genome ResearchProgram, and isolated seven rice cDNA clones (S3574, C60910,S12569, R2931, R1479, R1577, and E10707) coding for proteinscontaining one or two zinc-finger-like motifs. Comparison ofthe deduced amino acid sequences between these cDNAs and theCO gene revealed significant similarities (46%-;61%) in theregion of zinc-finger motifs. A domain having a high contentof basic amino acids at the C-terminus of the CO protein wasfound in the corresponding region of proteins predicted fromcDNAs S3574, C60910, and S12569. Two amino acid sequences, "CCADEAAL"and "FCV(L)EDRA," which were present inside each zinc-fingerin the Arabidopsis regulatory protein STO, were also found ineach of the two zinc-finger regions of proteins predicted fromcDNAs R2931, R1479, R1577, and E10707. Using restriction fragmentlength polymorphism (RFLP) linkage analysis, we determined thechromosomal location of the seven cDNA clones. The positionof R2931 on the RFLP linkage map was closely linked to Hd-3,one of the putative quantitative trait loci (QTL) controllingheading date in rice.  相似文献   

2.
3.
4.
5.
Li C  Huang L  Xu C  Zhao Y  Zhou DX 《PloS one》2011,6(7):e21789
Hybrids between different inbred varieties display novel patterns of gene expression resulted from parental variation in allelic nucleotide sequences. To study the function of chromatin regulators in hybrid gene expression, the histone deacetylase gene OsHDT1 whose expression displayed a circadian rhythm was over-expressed or inactivated by RNAi in an elite rice parent. Increased OsHDT1 expression did not affect plant growth in the parent but led to early flowering in the hybrid. Nonadditive up-regulation of key flowering time genes was found to be related to flowering time of the hybrid. Over-expression of OsHDT1 repressed the nonadditive expression of the key flowering repressors in the hybrid (i.e. OsGI and Hd1) inducing early flowering. Analysis of histone acetylation suggested that OsHDT1 over-expression might promote deacetylation on OsGI and Hd1 chromatin during the peak expression phase. High throughput differential gene expression analysis revealed that altered OsHDT1 levels affected nonadditive expression of many genes in the hybrid. These data demonstrate that nonadditive gene expression was involved in flowering time control in the hybrid rice and that OsHDT1 level was important for nonadditive or differential expression of many genes including the flowering time genes, suggesting that OsHDT1 may be involved in epigenetic control of parental genome interaction for differential gene expression.  相似文献   

6.
7.
To better understand the molecular mechanisms of the photoperiodic regulation of rice, a short-day plant, we isolated 27 cDNAs that were differentially expressed in the photoperiod-insensitive se5 mutant from approximately 8,400 independent mRNA species by the use of a fluorescent differential display (FDD). For this screening, we isolated mRNAs at five different time points during the night and compared their expression patterns between se5 and the wild type. Of 27 cDNAs isolated, 12 showed diurnal expression patterns often associated with genes involved in the determination of the flowering time. In se5, expression of nine cDNAs was increased. Five of these cDNAs were up-regulated under SD, suggesting that they may promote flowering under SD. They included genes encoding a cDNA containing a putative NAC domain, the fructose-bisphosphate aldolase, and a protease inhibitor. Expression of three cDNAs was decreased in se5 but not photoperiodically regulated. These cDNAs included a rice homolog of Arabidopsis GIGANTEA (GI), lir1, and a gene for myo-inositol 1-phosphate synthase, all of which were previously shown to be under the control of circadian clocks. The expression patterns of the rice homolog of GI, OsGI, were similar to those of the Arabidopsis GI, suggesting the conservation of some mechanisms for the photoperiodic regulation of flowering between these two species.  相似文献   

8.
A short exposure to light in the middle of the night causes inhibition of flowering in short-day plants. This phenomenon is called night break (NB) and has been used extensively as a tool to study the photoperiodic control of flowering for many years. However, at the molecular level, very little is known about this phenomenon. In rice (Oryza sativa), 10 min of light exposure in the middle of a 14-h night caused a clear delay in flowering. A single NB strongly suppressed the mRNA of Hd3a, a homolog of Arabidopsis thaliana FLOWERING LOCUS T (FT), whereas the mRNAs of OsGI and Hd1 were not affected. The NB effect on Hd3a mRNA was maximal in the middle of the 14-h night. The phyB mutation abolished the NB effect on flowering and Hd3a mRNA, indicating that the NB effect was mediated by phytochrome B. Because expression of the other FT-like genes was very low and not appreciably affected by NB, our results strongly suggest that the suppression of Hd3a mRNA is the principal cause of the NB effect on flowering in rice.  相似文献   

9.
Microsynteny with rice and comparative genetic mapping were used to identify candidate orthologous sequences to the rice Hd1(Se1) gene in Lolium perenne and Festuca pratensis. A F. pratensis bacterial artificial chromosome (BAC) library was screened with a marker (S2539) physically close to Hd1 in rice to identify the equivalent genomic region in F. pratensis. The BAC sequence was used to identify and map the same region in L. perenne. Predicted protein sequences for L. perenne and F. pratensis Hd1 candidates (LpHd1 and FpHd1) indicated they were CONSTANS-like zinc finger proteins with 61-62% sequence identity with rice Hd1 and 72% identity with barley HvCO1. LpHd1 and FpHd1 were physically linked in their respective genomes (< 4 kb) to marker S2539, which was mapped to L. perenne chromosome 7. The identified candidate orthologues of rice Hd1 and barley HvCO1 in L. perenne and F. pratensis map to chromosome 7, a region of the L. perenne genome which has a degree of conserved genetic synteny both with rice chromosome 6, which contains Hd1, and barley chromosome 7H, which contains HvCO1.  相似文献   

10.
11.
12.
Liu  Yuan  Luo  Cong  Zhang  Xiu-Juan  Lu  Xin-Xi  Yu  Hai-Xia  Xie  Xiao-Jie  Fan  Zhi-Yi  Mo  Xiao  He  Xin-Hua 《Plant Cell, Tissue and Organ Culture》2020,143(1):219-228
Plant Cell, Tissue and Organ Culture (PCTOC) - CONSTANS (CO)/CONSTANS-like (COL) genes play an important role in the photoperiodic flowering pathway. However, the functional roles of the CO/COL...  相似文献   

13.
14.
Samach A  Gover A 《Current biology : CB》2001,11(16):R651-R654
Photoperiodic induction of flowering in the long-day plant Arabidopsis is mediated by the circadian regulated CONSTANS gene. New evidence suggests that CONSTANS-like genes have a similar role in short-day induction of flowering of rice and Pharbitis.  相似文献   

15.
GIGANTEA (GI), CONSTANS (CO) and FLOWERING LOCUS T (FT) regulatephotoperiodic flowering in Arabidopsis. In rice, OsGI, Hd1 andHd3a were identified as orthologs of GI, CO and FT, respectively,and are also important regulators of flowering. Although GIhas roles in both flowering and the circadian clock, our understandingof its biochemical functions is still limited. In this study,we purified novel OsGI-interacting proteins by using the tandemaffinity purification (TAP) method. The TAP method has beenused effectively in a number of model species to isolate proteinsthat interact with proteins of interest. However, in plants,the TAP method has been used in only a few studies, and no novelproteins have previously been isolated by this method. We generatedtransgenic rice plants and cell cultures expressing a TAP-taggedversion of OsGI. After a two-step purification procedure, theinteracting proteins were analyzed by mass spectrometry. Sevenproteins, including dynamin, were identified as OsGI-interactingproteins. The interaction of OsGI with dynamin was verifiedby co-immunoprecipitation using a myc-tagged version of OsGI.Moreover, an analysis of Arabidopsis dynamin mutants indicatedthat although the flowering times of the mutants were not differentfrom those of wild-type plants, an aerial rosette phenotypewas observed in the mutants. We also found that OsGI is presentin both the nucleus and the cytosol by Western blot analysisand by transient assays. These results indicate that the TAPmethod is effective for the isolation of novel proteins thatinteract with target proteins in plants.  相似文献   

16.
In plants, flowering as a crucial developmental event is highly regulated by both genetic programs and environmental signals. Genetic analysis of flowering time mutants is instrumental in dissecting the regulatory pathways of flowering induction. In this study, we isolated the OsLF gene by its association with the T-DNA insertion in the rice late flowering mutant named A654. The OsLF gene encodes an atypical HLH protein composed of 419 amino acids (aa). Overexpression of the OsLF gene in wild type rice recapitulated the late flowering phenotype of A654, indicating that the OsLF gene negatively regulates flowering. Flowering genes downstream of OsPRR1 such as OsGI and Hd1 were down regulated in the A654 mutant. Yeast two hybrid and colocalization assays revealed that OsLF interacts strongly with OsPIL13 and OsPIL15 that are potentially involved in light signaling. In addition, OsPIL13 and OsPIL15 colocalize with OsPRR1, an ortholog of the Arabidopsis APRR1 gene that controls photoperiodic flowering response through clock function. Together, these results suggest that overexpression of OsLF might repress expression of OsGI and Hd1 by competing with OsPRR1 in interacting with OsPIL13 and OsPIL15 and thus induce late flowering.  相似文献   

17.
18.
19.
20.
水稻开花光周期调控相关基因研究进展   总被引:1,自引:0,他引:1  
水稻开花调控是一个极其复杂的生命过程,由自身遗传因素和外界环境共同决定。光周期途径是调控水稻开花的关键途径,在这个途径中成花素基因Hd3a和RTF1处于核心地位,其上游调控途径主要包括Hd1依赖途径、Ehd1依赖途径及不依赖于Hd1和Ehd1的途径。这3条途径在汇集了光信号的各种信息后,将信号在Hd3a和RTF1处整合,并通过成花素形式将信息传递给下游开花基因,调控水稻开花。本文从成花素、光信号感受基因和昼夜节律基因、成花素上游调控基因、互作蛋白和下游调控基因等几方面阐述水稻开花光周期调控相关基因的研究现状,为水稻开花调控的深入研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号