首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The porphyrin and tryptophan fluorescence of sperm whale apomyoglobin complexed with protoporphyrin IX has been studied in the pH range 2-13. It has been shown that the fluorescence and absorption spectra of protoporphyrin incorporated into the heme crevice remain constant in the pH range 5.5-10.8 but change significantly at pH less than 5.5 and pH greater than 10.8, due to the acid and alkaline denaturation, respectively, of the complex accompanied by dissociation of protoporphyrin IX. At the same pH ranges, the quantum yield of tryptophanyl fluorescence increases sharply as a result of removal of protoporphyrin, acting as a quencher, from the complex. Other parameters of tryptophanyl fluorescence (maximum position, halfwidth and spectrum shape) change in the alkaline region as well. In the acidic pH range, these parameters change only at pH less than 4.3, indicating that the Trp surroundings are more stable to denaturation than the heme crevice region. Between pH 5.5 and 10.9, where the complex of apomyoglobin with protoporphyrin IX is in its native state, the main parameters of tryptophan fluorescence remain unchanged except for the ratio I325/I350 which diminishes at pH greater than 9.5. Its alteration precedes the alkaline denaturation of the complex and can be explained by a local conformational change induced by the break of the 'salt bridges' essential for the maintenance of the native Mb structure in the N-terminal region. The fluorescence data obtained for apomyoglobin, myoglobin and the complex between protoporphyrin IX and apomyoglobin enable one to compare their structures and to evaluate the role of the porphyrin macrocycle and the iron atom in the formation of the native myoglobin structure and its functioning.  相似文献   

2.
Myoglobin is an alpha-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The simultaneous substitution of the two residues increases the susceptibility of the polypeptide chain to misfold, causing amyloid aggregation under physiological condition, i.e., neutral pH and room temperature. The role played by tryptophanyl residues in driving the folding process has been investigated by examining three mutated apomyoglobins, i.e., W7F, W14F, and the amyloid-forming mutant W7FW14F, by an integrated approach based on far-ultraviolet (UV) circular dichroism (CD) analysis, fluorescence spectroscopy, and complementary proteolysis. Particular attention has been devoted to examine the conformational and dynamic properties of the equilibrium intermediate formed at pH 4.0, since it represents the early organized structure from which the native fold originates. The results show that the W → F substitutions at position 7 and 14 differently affect the structural organization of the AGH subdomain of apomyoglobin. The combined effect of the two substitutions in the double mutant impairs the formation of native-like contacts and favors interchain interactions, leading to protein aggregation and amyloid formation.  相似文献   

3.
The individual emission properties of the two tryptophanyl residues of sperm-whale apomyoglobin have been resolved by examining the fluorescence variations induced by denaturants, i.e., acid and guanidine, on apomyoglobin mutants W7F and W14F. The fluorescence changes have been correlated to the conformational transitions undergone by apomyoglobin on increasing denaturant concentration. The results indicate that the fluorescence decrease, observed for sperm-whale apomyoglobin on going from pH 8.0 to pH 6.0, cannot be ascribed to the formation of a charge transfer complex between a nearby histidine residue and W14 as reported in earlier papers but rather to minor structural changes affecting the microenvironments of both residues. The formation of the acidic partly folded state around pH 4.0 determines an increase of the fluorescence yield and a small red shift (5 nm) of W7 due to removal of sterically interacting K79, which is able to attenuate the emission of this residue in the native state. The fluorescence intensity of the other residue, i.e., W14, is not affected by the acidic transition. Guanidine denaturation experiments revealed an increase of fluorescence yield of W14 upon the intermediate formation, whereas the fluorescence of the other residue remained constant. The results suggest that the unfolding pathway may be different depending on the chemical nature of the denaturant used.  相似文献   

4.
The individual tryptophanyl contributions to the near-ultraviolet circular dichroic activity of apomyoglobin in its native conformation have been resolved by studying recombinant proteins with single tryptophanyl substitutions. Site-directed mutagenesis of sperm whale apomyoglobin was performed in order to obtain proteins containing only Trp A-5 or Trp A-12. These amino acid substitutions have very little effect on the overall globin fold as indicated by comparing the spectroscopic properties of the mutants with those of the wild type protein. The circular dichroism spectra of the two apomyoglobin mutants in the near ultraviolet were found to be significantly different, both indole residues having significant activity but of opposite sign. In particular, Trp A-5 shows the presence of a main positive peak centered near 294 – 295 nm with a marked shoulder at 285 nm, ascribed to the 1LBtransition. The spectrum of the mutant protein containing only Trp A-12 shows a large negative contribution with a minimum near 283 nm and a marked shoulder at 293 nm. The broadness of the negative contribution exhibited by Trp A-12 suggests that it may originate mainly from the 1LA transition. Received: 17 February 1997 / Accepted: 14 August 1997  相似文献   

5.
Specific contributions of tyrosyl and of tryptophanyl residues can be distinguished in the near-ultraviolet circular dichroism spectrum of porcine pepsin. Upon addition of the dipeptide substrate, N-acetylphenylalanyl-l-3,5-diiodotyrosine, at pH values below 4.0, a change in the circular dichroic spectrum results, suggesting that in the presence of substrate the asymmetric environment of certain aromatic amino acid residues of the enzyme is altered. The changes observed are discussed in relation to the enzymatic function of pepsin.  相似文献   

6.
The far-ultraviolet circular dichroic spectrum of the 39-residue peptide hormone porcine corticotropin and the biologically active fragment corticotropin 1–24 is negative from 250 nm to 195 nm in water, but in 6M guanidinium chloride a positive band appears at about 225 nm. The temperature and guanidinium chloride dependence of this spectral transition indicates the absence of any stable ordered secondary structure in corticotropin and the spectrum is seen to be in only partial agreement with results using the model peptide chromophore, Ala-Ala-Ala. Using oligopeptides containing aromatic amino acid residues sandwiched between glycyl residues, it is shown that the shape and intensity of the corticotropin 225 nm positive band which appears in 6M guanidinium chloride is in agreement with the far-ultraviolet transitions of the aromatic chromophores in the hormone. Curve resolution of the near-ultraviolet circular dichroic spectrum of corticotropin and comparison of the rotational strengths of the phenylalanyl and tyrosyl bands reveals no evidence for increased rotational freedom in 6M guanidinium hydrochloride. Spectral changes are observed, however, in the transitions arising from the single tryptophan. This study suggests that corticotropin in aqueous solution may serve as a better model for the circular dichroic spectrum of the aperiodic regions in globular proteins than either synthetic homopolypeptides or reference proteins for which spectral and X-ray diffraction data are available.  相似文献   

7.
alpha-1-antitrypsin, the major inhibitor of proteolytic enzymes in human serum, was isolated from normal individuals (protease inhibitor type MM) and from those with an inherited deficiency (protease inhibitor type ZZ) of circulatory protein. The two proteins were compared by circular dichroism spectroscopy, and by fluorescence quenching experiments using anionic (I-), and neutral (acrylamide) probes. Both proteins share a similar secondary structure, i.e. approximately 45--50% alpha-helix and 15--20% beta-structure. Evidence was accumulated to show that the microenvironment in the vicinity of the three tryptophanyl residues is altered in Z form as compared to the M form as shown by (a) the absence of the positive dichroic band in the region 290--300 nm of the circular dichroism spectra, (b) a greater than 50% increase in quantum yield in the tryptophanyl fluorescence emission spectra, (c) an increased accessibility of tryptophan to quenching by iodide, and (d) acrylamide quenching experiments which indicate that all tryptophanyl residues in the Z protein are quenched equally or that quenching is dominated by a single residue, while in the M protein, heterogeneous quenching occurs. The potential significance of these findings in terms of alpha-1-antitrypsin deficiency state are discussed.  相似文献   

8.
S Mabrey  I M Klotz 《Biochemistry》1976,15(1):234-242
The conformation of the gonadotropin releasing hormone (Gn-RH), whose primary sequence is pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-GlyNH2, and of several of its structural analogues has been studied by circular dichroism, optical rotatory dispersion, and fluorescence spectroscopy. The effects of pH, guanidine, and temperature on fluorescence emission have also been examined. Titration data demonstrate that the histidine and tyrosine residues are free of any mutual interactions. The similarity of emission spectra in water and in guanidine hydrochloride solutions precludes significant interactions between the fluorescent groups and other residues. Neither the temperature nor the pH profiles of the emission intensities of either tyrosine or tryptophan reveal any fixed secondary structure in Gn-RH. Both the extent of alkaline quenching and the distance of 10-11 A calculated from F?rster energy transfer theory are in accord with a randomly coiled structure with only one residue between tyrosine and tryptophan. Furthermore, the circular dichroism spectrum and optical rotatory dispersion do not exhibit any contributions from peptide bonds in an ordered structure, although there is a perturbation of the peptide absorption region due to overlapping bands from side-chain chromophores. Gn-RH, therefore, appears to behave as a random coil polypeptide in water devoid of any intrachain residue interactions. This nonordered structure in Gn-RH and the lack of any significant differences in the physical-chemical properties of the hormone analogues indicate that a predetermined solution conformation is not required for biological activity. In contrast to its behavior in water, Gn-RH in trifluoroethanol exhibits a conformational transition, with the formation of a beta structure. Differences in conformational changes exhibited by several analogues in trifluoroethanol may be relevant to their relative biological activities at the receptor site.  相似文献   

9.
To determine the tryptophan content in proteins,an analytical ultraviolet fluroescence method is proposed based on making uniform the environment of aromatic chromophores in 6-7 M guanidine hydrochloride. The fluorescence intensity scale is calibrated using standard solutions of free tryptophan. A correlation coefficient between the fluorescence of protein tryptophanyl residues and of free tryptophan was estimated in testing 17 well characterized proteins. This method is particularly suited to proteins carrying groups absorbing in the 290-370 nm region, such as flavin, heme and pyridoxal phosphate and in the presence of substances such as 2-mercaptoethanol which prohibit the use of the spectroscopic or magnetic circular dichroism methods. It is less time-consuming than techniques requiring hydrolysis or chemical reactions.  相似文献   

10.
E Bismuto  G Irace  E Gratton 《Biochemistry》1989,28(4):1508-1512
The tryptophanyl fluorescence decays of two myoglobins, i.e., sperm whale and tuna myoglobin, have been examined in the frequency domain with an apparatus which utilizes the harmonic content of a mode-locked laser. Data analysis was performed in terms of continuous distribution of lifetime having a Lorentzian shape. Data relative to sperm whale myoglobin, which possesses two tryptophanyl residues, i.e., Trp-A-5 and -A-12, provided a broad lifetime distribution including decay rates from a few picoseconds to about 10 ns. By contrast, the tryptophanyl lifetime distribution of tuna myoglobin, which contains only Trp-A-12, showed two well-separated and narrow Lorentzian components having centers at about 50 ps and 3.37 ns, respectively. In both cases, the chi 2 obtained from distribution analysis was lower than that provided by a fit using the sum of exponential components. The long-lived components present in the fluorescence decay of the two myoglobins do not correspond to any of those observed for the apoproteins at neutral pH. The tryptophanyl lifetime distribution of sperm whale apomyoglobin consists of two separated Lorentzian components centered at 2.25 and 5.4 ns, whereas that of tuna apomyoglobin consists of a single Lorentzian component, whose center is at 2.19 ns. Acidification of apomyoglobin to pH 3.5 produced a shift of the distribution centers toward longer lifetimes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Human serum albumin (HSA) is a protein of 66.5 kDa that is composed of three homologous domains, each of which displays specific structural and functional characteristics. HSA is known to undergo different pH-dependent structural transitions, the N-F and F-E transitions in the acid pH region and the N-B transition at slightly alkaline pH. In order to elucidate the structural behavior of the recombinant HSA domains as stand-alone proteins and to investigate the molecular and structural origins of the pH-induced conformational changes of the intact molecule, we have employed fluorescence and circular dichroic methods. Here we provide evidence that the loosening of the HSA structure in the N-F transition takes place primarily in HSA-DOM III and that HSA-DOM I undergoes a structural rearrangement with only minor changes in secondary structure, whereas HSA-DOM II transforms to a molten globule-like state as the pH is reduced. In the pH region of the N-B transition of HSA, HSA-DOM I and HSA-DOM II experience a tertiary structural isomerization, whereas with HSA-DOM III no alterations in tertiary structure are observed, as judged from near-UV CD and fluorescence measurements.  相似文献   

12.
Structural features of a recombinant E. coli derived interferon-alpha analog, interferon consensus1, was studied by circular dichroism and fluorescence spectroscopy. Circular dichroic spectra of the purified protein showed that it has about 70% alpha-helix and a distinct tertiary structure. These structural features are similar to those for a natural interferon-alpha subtype, interferon-alpha 2, indicating that the amino acid substitutions in interferon consensus1 apparently did not alter the protein structure. Another analog, interferon consensus5, which has Ser instead of Cys at residues 1 and 99 but is otherwise identical to interferon consensus1, was prepared to study the role of the disulfide bond between Cys 1 and 99. Circular dichroic and fluorescence spectra indicated similarity in the structure of these two analogs. However, interferon consensus1 was significantly more stable than interferon consensus5 against denaturation. pH unfolding experiments indicated that the former protein is more stable in the transition region by about 1.6 kcal/mol, which was interpreted in terms of the increased free energy of the denatured state due to an extra disulfide bond in interferon consensus1.  相似文献   

13.
The interaction between horse liver alcohol dehydrogenase and the oxidized and reduced forms of the 3-thionicotinamide--adenine dinucleotide coenzyme analogues (sNAD and sNADH) has been investigated by ultraviolet absorption, fluorescence and circular dichroism. The fluorescence of sNADH is enhanced when bound to the enzyme, and the protein fluorescence is quenched by both sNADH (60--65%) and sNAD (65%). The possible origin of the larger quenching produced by sNAD with respect to that of NAD is discussed. Coenzyme dissociation constants have been determined by monitoring the quenching of the protein fluorescence, and some kinetic consequences of these dissociation constants are discussed. The dichroic properties of various enzyme complexes have been investigated, and are discussed in terms of conformational changes and environmental changes during coenzyme binding. The conformation of sNAD bound to the enzyme in the presence of trifluorethanol and the conformation of sNADH bound to the enzyme in the presence of isobutyramide have been analyzed in particular detail. Also the circular dichroic spectrum of the apoenzyme is discussed in terms of contributions of the aromatic amino acid residues in the highly resolved 240--310-nm region and in terms of helix content in the 220-nm region.  相似文献   

14.
The secondary and tertiary structure of human plasma thyroxine-binding globulin (TBG) was investigated by circular dichroism and fluorescence properties. The relaxation time of TBG indicated that it is a compact, symmetric molecule. It was calculated from the far ultraviolet CD spectrum that about one-half of the peptide groups are equally distributed in alpha helical and beta structures. In the near ultraviolet, the CD spectrum of TBG was modified when thyroxine was bound. TBG was stable at temperatures below 50 degrees at pH 9 and below 35 degrees at pH 10.5. Below pH 5 tryptophanyl fluorescence revealed a molecular transition which followed first order kinetics. The transition resulted in an irreversible loss of binding of the hormone. Acidification to pH 3.4 produced only a minor change in the CD spectrum, in which some of the alpha helical peptides were converted to beta structure.  相似文献   

15.
E Bismuto  E Gratton  G Irace 《Biochemistry》1988,27(6):2132-2136
Proteins exhibit, even in their native state, a large number of conformations differing in small details (substates). The fluorescence lifetime of tryptophanyl residues can reflect the microenvironmental characteristics of these subconformations. We have analyzed the lifetime distribution of the unique indole residue of tuna apomyoglobin (Trp A-12) during the unfolding induced by temperature or guanidine hydrochloride. The results show that the increase of the temperature from 10 to 30 degrees C causes a sharpening of the lifetime distribution. This is mainly due to the higher rate of interconversion among the conformational substates in the native state. A further temperature increase produces partially or fully unfolded states, resulting in a broadening of the tryptophanyl lifetime distribution. The data relative to the guanidine-induced unfolding show a sigmoidal increase of the distribution width, which is due to the transition of the protein structure from the native to the random-coiled state. The broadening of the lifetime distribution indicates that, even in the fully unfolded protein, the lifetime of the tryptophanyl residues is influenced by the protein matrix, which generates very heterogeneous microenvironments.  相似文献   

16.
Circular dichroic spectra of metmyoglobin and apomyoglobin were measured in neutral and acidic solution. Addition of sodium dodecyl sulfate (NaDodSO4) slightly reduces the helicity (based on the circular dichroic magnitude) of both proteins probably because of the loss of long-range interactions among helical segments. Lowering the pH of the protein-surfactant solution to 3 slightly enhances the helical conformation of myoglobin due to the protonation of acidic side groups and thereby the reduction of coulombic repulsion among negative charges. For BrCN-digested fragments the COOH-terminal peptide (22 residues) loses its helicity which can be restored by addition of NaDodSO4. The middle fragment (76 residues) retains a considerable amount of helicity in water alone, which further increases in the presence of NaDodSO4. The NH2-terminal fragment (55 residues) also has some helical conformation in water, which is enhanced by the addition of NaDodSO4. The circular dichroic spectrum of an equimolar mixture of the three peptides in NaDodSO4 solution is the same as that calculated from the spectra of isolated peptides under similar conditions.  相似文献   

17.
The conformational state of sperm whale apomyoglobin (apoMb) was studied at neutral pH in the presence of negatively charged vesicles using near- and far-UV circular dichroism, tryptophan fluorescence, differential scanning microcalorimetry, and fast performance liquid chromatography. Under these conditions, the apoMb structure undergoes transition from its native to an intermediate state. In this state the protein loses its rigid native structure but retains its secondary structure. However, the environment of tryptophan residues remains rather hydrophobic. This intermediate state of apoMb shows properties similar to those of its molten globule state in solution. It is shown that apoMb can bind to negatively charged phospholipid vesicles even at neutral pH. A possible functional role of this intermediate state is discussed.  相似文献   

18.
Unfolding pathway of myoglobin: molecular properties of intermediate forms   总被引:1,自引:0,他引:1  
The guanidine-induced unfolding of myoglobin as well as apomyoglobin has been found to involve the occurrence of at least a molecular intermediate observed at low denaturant concentrations, the molecular properties of which resemble those possessed by the acid-denatured form of the protein. The two partially unfolded forms show the same secondary structure and similar tryptophanyl fluorescence emission and polarization but exhibit marked differences in the tyrosine contributions to the near-ultraviolet circular dichroism and in the degree of solvent accessibility to tyrosyl residues. The molecular characterization of the two structural forms indicates that acids disorganize the 80-146 molecular domain identified in the myoglobin molecule to a great extent with respect to that induced by low guanidine concentration, whereas the structure of the 1-79 domain appears to be quite similar in the two molecular forms.  相似文献   

19.
The conformational state of sperm whale apomyoglobin (apoMb) was studied at neutral pH in the presence of negatively charged vesicles using near and far UV circular dichroism, tryptophan fluorescence, differential scanning microcalorimetry, and fast performance liquid chromatography. Under these conditions, the apoMb structure undergoes transition from its native to an intermediate state. In this state the protein loses its rigid native structure but retains its secondary structure. However, the environment of tryptophan residues remains rather hydrophobic. This intermediate state of apoMb shows properties similar to those of its molten globule state in solution. It is shown that apoMb can bind to negatively charged phospholipid vesicles even at neutral pH. A possible functional role of this intermediate state is discussed.  相似文献   

20.
The molecular properties of the salt-induced partly folded acidic state of apomyoglobin as well as myoglobin were investigated by fluorescence and circular dichroism of the extrinsic fluorophore 1,8-anilinonaphthalenesulfonate. The occurrence of a fluctuating tertiary structure ("molten globule") at acidic pH in the presence of salt was suggested by the disappearance of the dichroic activity of the fluorophore bound to the partly folded protein. Moreover, the structure of the intermediate is not influenced by the presence of heme, thus suggesting that heme is not crucial in the early stage of myoglobin folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号