首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kimber A  Sze H 《Plant physiology》1984,74(4):804-809
The effects of purified Helminthosporium maydis T (HmT) toxin on active Ca2+ transport into isolated mitochondria and microsomal vesicles were compared for a susceptible (T) and a resistant (N) strain of corn (Zea mays). ATP, malate, NADH, or succinate could drive 45Ca2+ transport into mitochondria of corn roots. Ca2+ uptake was dependent on the proton electrochemical gradient generated by the redox substrates or the reversible ATP synthetase, as oligomycin inhibited ATP-driven Ca2+ uptake while KCN inhibited transport driven by the redox substrates. Purified native HmT toxin completely inhibited Ca2+ transport into T mitochondria at 5 to 10 nanograms per milliliter while transport into N mitochondria was decreased slightly by 100 nanograms per milliliter toxin. Malate-driven Ca2+ transport in T mitochondria was frequently more inhibited by 5 nanograms per milliliter toxin than succinate or ATP-driven Ca2+ uptake. However, ATP-dependent Ca2+ uptake into microsomal vesicles from either N or T corn was not inhibited by 100 nanograms per milliliter toxin. Similarly, toxin had no effect on proton gradient formation ([14C]methylamine accumulation) in microsomal vesicles. These results show that mitochondrial and not microsomal membrane is a primary site of HmT toxin action. HmT toxin may inhibit formation of or dissipate the electrochemical proton gradient generated by substrate-driven electron transport or the mitochondrial ATPase, after interacting with a component(s) of the mitochondrial membrane in susceptible corn.  相似文献   

2.
Insulin, in the presence of Mg2+ and Pi, can transport D-glucose across a bulk phase separating two aqueous phases. All three molecular species (Mg2+, Pi, D-glucose) are transported simulataneously in 1:1:1 stoichiometry. The same system will transport D-galactose and L-arabinose, but not L-glucose, D-arabinose, D-mannitol, D-fructose and 3-0-methyl glucose. Phloridzin completely suppresses transport, not only of glucose, but also of Mg2+ and Pi. Other divalent metal ions are less efficient (Mg2+ >Mn2+ >Ca2+ >Zn2+). The capability of insulin for transport of D-glucose is not duplicated by proinsulin or glucagon. Amino acids and citric cycle substrates are also transported, some as rapidly as D-glucose. Pi is replaceable by phosphate esters such as AMP, ADP and ATP, less efficiently with Mg2+, but more efficiently with Ca2+ as metal ion. The transport of D-glucose in the systems formed by insulin, Ca2+ and nucleotide is less sensitive to phloridzin than the standard Mg2+, Pi system.  相似文献   

3.
Ca2+ is an important regulatory ion and alteration of mitochondrial Ca2+ homeostasis can lead to cellular dysfunction and apoptosis. Ca2+ is transported into respiring mitochondria via the Ca2+ uniporter, which is known to be inhibited by Mg2+. This uniporter-mediated mitochondrial Ca2+ transport is also shown to be influenced by inorganic phosphate (Pi). Despite a large number of experimental studies, the kinetic mechanisms associated with the Mg2+ inhibition and Pi regulation of the uniporter function are not well established. To gain a quantitative understanding of the effects of Mg2+ and Pi on the uniporter function, we developed here a mathematical model based on known kinetic properties of the uniporter and presumed Mg2+ inhibition and Pi regulation mechanisms. The model is extended from our previous model of the uniporter that is based on a multistate catalytic binding and interconversion mechanism and Eyring's free energy barrier theory for interconversion. The model satisfactorily describes a wide variety of experimental data sets on the kinetics of mitochondrial Ca2+ uptake. The model also appropriately depicts the inhibitory effect of Mg2+ on the uniporter function, in which Ca2+ uptake is hyperbolic in the absence of Mg2+ and sigmoid in the presence of Mg2+. The model suggests a mixed-type inhibition mechanism for Mg2+ inhibition of the uniporter function. This model is critical for building mechanistic models of mitochondrial bioenergetics and Ca2+ handling to understand the mechanisms by which Ca2+ mediates signaling pathways and modulates energy metabolism.  相似文献   

4.
Summary Periodical changes in Ca2+-ATPase and Mg2+-ATPase activity were observed cytochemically in the crayfish gastrolith epithelium during the molting cycle in relation to the calcium transport mechanism. The ATPase activity was demonstrated by a new one-step lead citrate method. The reaction products were mainly restricted to the matrix of type II cell mitochondria. The Ca2+-ATPase activity was intensely observed in two calcium moving stages, the small gastrolith period which indicates the beginning of gastrolith formation, and the aftermolt, when the calcified gastrolith has been dissolved in the stomach and then reabsorbed from the stomach epithelium into the newly formed soft exoskeleton through the blood. Although the intensity of reaction products of Mg2+-ATPase varied in each stage, the enzymatic activity was observed throughout all molting stages. Reaction products were observed in all mitochondria, basement membranes, apical cytoplasmic membranes, and in some lysosomes. In conclusion, periodical changes in the two types of ATPase activity were seen in the mitochondria of gastrolith epithelium during the molting cycle, but Ca2+-ATPase activity seemed to be more prominently synchronized to the calcium movement in the gastrolith epithelium than Mg2+-ATPase activity. These results provide the strong evidence that Ca2+-ATPase may act strongly in the calcium transport system of crayfish molting.  相似文献   

5.
Mitochondria isolated from the hepatopancreas of the blue crab Callinectes sapidus show up to 12-fold stimulation of respiration on addition of Ca2+, which is accompanied by Ca2+ accumulation (Ca2+:site = 1.9) and H+ ejection (H+:Ca2+ = 0.85). Sr2+ and Mn2+ are also accumulated; Mg2+ is not. A strongly hypertonic medium (383 mosM), Mg2+, and phosphate are required for maximal Ca2+ uptake. Ca2+ uptake takes precedence over oxidative phosphorylation of ADP for respiratory energy. Once Ca2+ is accumulated by the crab mitochondria, it is stable and only very slowly released, even by uncoupling agents. ATP hydrolysis also supports Ca2+ uptake. Respiration-inhibited crab hepatopancreas mitochondria show both high-affinity and low-affinity Ca2+-binding sites, which are inactive in the presence of uncoupling agents. Crab hepatopancreas mitochondria have an enormous capacity for accumulation of Ca2+, up to 5,500 ng-atoms Ca2+ per mg protein, with an equivalent amount of phosphate. Freshly isolated mitochondria contain very large amounts of Ca2+, Mg2+, phosphate, K+, and Na+; their high Ca2+ content is a reflection of the vary large amount of extra-mitochondrial Ca2+ in the whole tissue. Electron microscopy of crab mitochondria loaded with Ca2+ and phosphate showed large electron-dense deposits, presumably of precipitated calcium phosphate. They consisted of bundles of needle-like crystals, whereas Ca2+-loaded rat liver mitochondria show only amorphous deposits of calcium phosphate under similar conditions. The very pronounced capacity of crab hepatopancreas mitochondria for transport of Ca2+ appears to be adapted to a role in the storage and release of Ca2+ during the molting cycle of this crustacean.  相似文献   

6.
Isolated mussel mitochondria produced a less pronounced transient stimulation of respiration upon the addition of Ca2+ in a reaction medium containing Pi and a slower rate of Ca2+ transport compared to rat liver mitochondria. The initial rates of Ca2+ transport in the absence of Pi were more similar and both types of mitochondria possessed a sigmoidal relationship between the initial rate of Ca2+ transport and the free Ca2+ concentration (‘Km’ ? 5μM). Ruthenium red produced an equal maximal inhibition of the initial rate of Ca2+ transport in both types of mitochondria but mussel mitochondria were rather more resistant to the inhibitor. The major difference found was that approximately 15 nmoles La3+ mg protein?1 was required to produce maximal inhibition of the initial rate of Ca2+ transport in mussel mitochondria compared to approximately 1.0 nmole La3+ mg protein?1 in rat liver mitochondria. It is concluded that mussel mitochondria possess a comparable Ca2+ transporter to vertebrate mitochondria and possible reasons for resistance to La3+ are discussed.  相似文献   

7.
Microsomal membrane vesicles isolated from goat spermatozoa contain Ca2+-ATPase, and exhibit Ca2+ transport activities that do not require exogenous Mg2+ .The enzyme activity is inhibited by calcium-channel inhibitors,e.g. verapamil and diltiazem, like the well known Ca2+ , Mg2+-ATPase. The uptake of calcium is ATP (energy)-dependent and the accumulated Ca2+ can be completely released by the Ca2+ ionophore A23187, suggesting that a significant fraction of the vesicles are oriented inside out  相似文献   

8.
Mitochondria isolated from the late-exponential non-shaken culture of the ciliate protozoan Tetrahymena pyriformis GL was investigated. The presence of energy-dependent Ca2+ transport system was shown. In the main the properties of this system have been essentially the same as in mitochondria of vertebrate organisms. The isolated mitochondria contained 23±5 ng-ion Ca2+ per mg of protein. The intramitochondrial free concentration of Ca2+ was measured in the presence of uncoupler FCCP with the use of fluorescent Ca2+ chelator chlortetracycline and null point titration method. In the absence of phosphate, free [Ca2+] varied from 1 to 2.5 mM depending on the internal Ca2+ content. In the presence of 2 mM phosphate, free [Ca2+]in has not exceeded 0.1–0.3 mM. It was shown that ruthenium red and Mg2+ in different manner have an inhibitory effect on Ca2+ transport. Besides this, Mg2+ also has a stabilizing effect on mitochondria, possibly, by preventing passive ions leaks across the membrane.  相似文献   

9.
A (Ca2+, Mg2+)-ATPase activity and a (Ca2+, Mg2+)-dependent phosphorylation from ATP have been found in plasma membrane fragments from squid optical nerves under conditions where contamination by intracellular organelles is unlikely. The properties of this (Ca2+, Mg2+)-ATPase activity are almost identical to those of the ATP-dependent uncoupled Ca2+ efflux observed in dialyzed squid giant axons. This gives further support to the notion that the mechanism responsible for maintaining the low levels of ionized Ca concentration in nerves at rest is not a Na+-Ca2+ exchange system but an ATP-driven uncoupled Ca2+ pump.  相似文献   

10.
Adrien Binet  Pierre Volfin 《BBA》1977,461(2):182-187
The effects of platinum complexes, selected for their potent anti-tumor activities, have been studied on rat liver mitochondria. Among the mitochondrial properties which have been studied, the most marked effects of platinum complexes were obtained on functions linked to the inner membrane.cis-Pt(II)(3,4-diaminotoluene) dichloride is shown to stimulate state 4 respiration. It inhibits the phosphate transport into mitochondria, decreases the accumulation of Ca2+, and induces a more rapid release of the accumulated Ca2+. A release of Mg2+ from mitochondria incubated in the absence of added divalent cations, and an efflux of divalent cations from mitochondrial membranes are also observed.All these results indicate a profound modification of the permeability of mitochondrial membrane.  相似文献   

11.
Spermine, spermidine, and magnesium ions modulate the kinetic parameters of the Ca2+ transport system ofEndomyces magnusii mitochondria. Mg2+ at concentrations up to 5 mM partially inhibits Ca2+ transport with a half-maximal inhibiting concentration of 0.5 mM. In the presence of 2 mM MgCl2, theS 0.5 value of the Ca2+ transport system increases from 220 to 490 µM, which indicates decreased affinity for the system. Spermine and spermidine exert an activating effect, having half-maximal concentrations of 12 and 50 µM, respectively. In the case of spermine, theS 0.5 value falls to 50–65 µM, which implies an increase in the transport system affinity for Ca2+. Both Mg2+ and spermine cause a decrease of the Hill coefficient, giving evidence for a smaller degree of cooperativity. Spermine and spermidine enable yeast mitochondria to remove Ca2+ from the media completely. In contrast, Mg2+ lowers the mitochondrial buffer capacity. When both Mg2+ and spermine are present in the medium, their effects on theS 0.5 value and the free extramitochondrial Ca2+ concentration are additive. The ability of spermine and Mg2+ to regulate yeast mitochondrial Ca2+ transport is discussed.  相似文献   

12.
13.
The effect of archidonic, oleic and linoleic acid on calcium uptake and release by sarcoplasmic reticulum isolated from longissimus dorsi muscle was investigated using a Ca2+ electrode. All three long chain fatty acids stimulated the release of Ca2+ from sacroplasmic reticulum when added after exogenous Ca2+ was accumulated by the vesicles, and also inhibited Ca2+ uptake when added before Ca2+. This inhibitory effect on the calcium transport by arachidonic, oleic and linoleic acid was prevented by bovine serum albumin through its ability to bind with the fatty acid. The order of effectiveness of the fatty acids in inhibiting calcium transport by isolated sarcoplasmic reticulum was arachidonic acid> oleic acid > linoleic acid. Similar inhibition of calcium uptake and induction of calcium release by arachidonic acid was observed in muscle homogenate sarcoplasmic reticulum preparations. Both arachidonic and oleic acid stimulated the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum at low concentrations, but inhibited the (Ca2+ + Mg2+)-ATPase activity at high concentrations. The maximal (Ca2+ + Mg2+-ATPase activity observed with arachidonic acid was twice that obtained with oleic acid, but the concentration of arachidonic acid required was 3–4-times greater than that of oleic acid. The concentration of arachidonic acid required to give maximum stimulation of the (Ca2+ + Mg2+)-ATPase activity was 3.6-times greater than that needed for complete inhibition of calcium accumulation by the sacroplasmic reticulum. With oleic acid, however, the concentration required to give maximum stimulation of the (Ca2+ + Mg2+)-ATPase activity inhibited the sarcoplasmic reticulum Ca2+ accumulation by 72%. The present data support our hypothesis that, in porcine malignant hyperthermia, unsaturated fatty acids from mitochondrial membranes released by endogenous phospholipase A2 would induce the sarcoplasmic reticulum to release calcium (Cheah K.S. and Cheah, A.M. (1981) Biochim. Biophys. Acta 634, 70–84).  相似文献   

14.
Some features of the Ca2+-transport system in mitochondria of the yeast Endomyces magnusii are considered. The Ca2+ uniporter was shown to be specifically activated by low concentrations of physiological modulators such as ADP, NADH, spermine, and Ca2+ itself. The Na+-independent system responsible for Ca2+ release from Ca2+-preloaded yeast mitochondria was characterized. The rate of the Ca2+ release was proportional to the Ca2+ load, insensitive to cyclosporin A and to Na+, inhibited by La3+, TPP+, Pi, and nigericin, while being activated by spermine. We conclude that Ca2+ release from preloaded E. magnusii yeast mitochondria is mediated by a Na+-independent pathway, very similar to that in mitochondria from nonexcitable mammalian tissues. A scheme describing an arrangement of the Ca2+ transport system of yeast mitochondria is proposed.  相似文献   

15.
The presence of an energy-dependent calcium uptake system in adipocyte endoplasmic reticulum (D. E. Bruns, J. M. McDonald, and L. Jarett, 1976, J. Biol. Chem.251, 7191–7197) suggested that this organelle might possess a calcium-stimulated transport ATPase. This report describes two types of ATPase activity in isolated microsomal vesicles: a nonspecific, divalent cation-stimulated ATPase (Mg2+-ATPase) of high specific activity, and a specific, calcium-dependent ATPase (Ca2+ + Mg2+-ATPase) of relatively low activity. Mg2+-ATPase activity was present in preparations of mitochondria and plasma membranes as well as microsomes, whereas the (Ca2+ + Mg2+)-ATPase activity appeared to be localized in the endoplasmic reticulum component of the microsomal fraction. Characterization of microsomal Mg2+-ATPase activity revealed apparent Km values of 115 μm for ATP, 333 μm for magnesium, and 200 μm for calcium. Maximum Mg2+-ATPase activity was obtained with no added calcium and 1 mm magnesium. Potassium was found to inhibit Mg2+-ATPase activity at concentrations greater than 100 mm. The energy of activation was calculated from Arrhenius plots to be 8.6 kcal/mol. Maximum activity of microsomal (Ca2+ + Mg2+)-ATPase was 13.7 nmol 32P/mg/min, which represented only 7% of the total ATPase activity. The enzyme was partially purified by treatment of the microsomes with 0.09% deoxycholic acid in 0.15 m KCl which increased the specific activity to 37.7 nmol 32P/mg/min. Characterization of (Ca2+ + Mg2+)-ATPase activity in this preparation revealed a biphasic dependence on ATP with a Hill coefficient of 0.80. The apparent Kms for magnesium and calcium were 125 and 0.6–1.2 μm, respectively. (Ca2+ + Mg2+)-ATPase activity was stimulated by potassium with an apparent Km of 10 mm and maximum activity reached at 100 mm potassium. The energy of activation was 21.5 kcal/mol. The kinetics and ionic requirements of (Ca2+ + Mg2+)-ATPase are similar to those of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum. These results suggest that the (Ca2+ + Mg2+)-ATPase of adipocyte endoplasmic reticulum functions as a calcium transport enzyme.  相似文献   

16.
Summary In a study of the Ca2+ kinetics of mitochondria of chick epiphyseal chondrocytes, the rate of Ca2+ uptake was linear up to a medium Ca2+ concentration of 30 m. The half maximal transport rate occurred at 34 m Ca2+. The Ca2+ uptake rate, expressed as a function of time, was 35 nmoles/mg protein/min; the presence of Mg2+ had little effect on Ca2+ accumulation. While these kinetic parameters did not differ significantly from mitochondria of cells of nonmineralizing tissues, the respiratory characteristics of the chondrocyte organelles exhibited functional differences. Thus, up to 350 nmoles Ca2+/mg protein, chondrocyte mitochondria performed coupled oxidative phosphorylation. Calcium uptake was energy supported, while Ca2+ binding was low. Addition of respiratory inhibitors and uncouplers to these mitochondria resulted in a rapid loss of more than 80% of the total Ca2+. The Ca/Pi ratio of the extrudate was very similar to the ratio of these ions in cartilage septum fluid. In the most mineralized zones of the epiphyseal plate, there was little change in the state 4 respiratory rate, but nonspecific Ca2+ binding was elevated and a high percentage of the total Ca2+ was in a nonextrudable form. The results indicate that in cells preparing for mineralization, much of the total mitochondrial Ca2+ is in a form that can be transported to the calcification front. In cells close to the calcification front, nonextrudable Ca2+ may form calcium phosphate granules described by other investigators.  相似文献   

17.
Parallel measurements of Ca2+ uptake, oxygen consumption, endogenous Mg2+ efflux, and swelling in rotenone-poisoned rat liver and rat heart mitochondria showed that heart mitochondria is much more resistant to uncoupling by Ca2+ in the presence of phosphate than rat liver mitochondria. The extent of Mg2+ efflux and swelling induced by Ca2+ accumulation are much less pronounced in heart mitochondria. Uncoupling and swelling in liver mitochondria seem to result from the loss of membrane-bound Mg2+ as a consequence of Ca2+ recycling across the membrane as induced by phosphate. Exogenous Mg2+ protects liver mitochondria against the deleterious effects of Ca2+ by inhibiting a ruthenium red-insensitive Ca2+ efflux induced by phosphate. Phosphate does not induce recycling of Ca2+ in heart mitochondria. On the other hand, heart mitochondria respiring on NAD-linked substrates or with succinate in the absence of rotenone behave like liver mitochondria with respect to the alterations caused by Ca2+ recycling. In heart mitochondria the recycling of Ca2+ is related to the redox state of pyridine nucleotides, which suggests that the ruthenium red-insensitive efflux of Ca2+ is subject to metabolic control. In addition it has been observed that Sr2+does not undergo cyclic movements across the membrane. The data indicate that the efflux pathway is more specific for Ca2+ than the ruthenium red-sensitive influx transporter.  相似文献   

18.
Mitochondria prepared from human myometrium contain large amounts of endogenous Ca2+ (up to 200 nmol/mg of protein) even if isolated in media containing ethylene glycol-bis(β-aminoethylether)-N,N′-tetraacetic acid. The endogenous Ca+2, however, is not irreversibly sequestered, since it can be rapidly and quantitatively discharged by uncouplers. Human myometrial mitochondria are capable of efficient energy-linked Ca2+ transport. In the absence of phosphate, the amount of Ca2+ accumulated is reduced to insignificant levels. Mg2+ has a strong inhibitory effect, which has been exploited to develop an inhibitor-stop method which has permitted the determination of the affinity of myometrial mitochondria for Ca2+ (Km, ~5 μM) and of the maximal velocity of uptake (0.55 nmol/mg of protein/s). The respiration of human myometrial mitochondria is stimulated by Ca2+, with respiratory control indexes of the order of 4–5. In contrast, ADP induces an insignificant stimulation, or no stimulation at all. The response of respiration to ADP is somewhat improved if mitochondria are preincubated under conditions which decrease their endogenous Ca2+ content. The adenine nucleotide exchange in human myometrial mitochondria is deficient with respect to liver mitochondria.  相似文献   

19.
The directin vitro effects of alloxan on the Ca2+ handling by microsomal membranes isolated from dog mesenteric arteries were investigated. Preincubation of the vascular muscle microsomal membranes with alloxan showed a suppressive effect on both binding of Ca2+ (in the absence of ATP) and ATP-driven Ca2+ transport. Such an inhibition was time dependent, dose dependent, and temperature dependent. ATP-driven Ca2+ transport was much more susceptible to the inhibitory action of alloxan than Ca2+ binding under all experimental conditions examined. Alloxan inhibited ATP-driven Ca2+ transport at a comparable level over the entire period of Ca2+ uptake, but had no significant effect on the efflux of Ca2+ from preloaded microsomal membranes. This suggests that alloxan exerts its inhibitory effect on the ATP-driven Ca2+ transport via its action on the Ca-pump protein rather than the membrane permeability to Ca2+. Catalase and mannitol but not superoxide dismutase partially protected against such as inhibition by alloxan. The possible involvement of H2O2 mediating the inhibitory action of alloxan was further supported by the finding of a similarin vitro inhibitory effect of H2O2 on the ATP-driven Ca2+ transport by the vascular smooth muscle microsomes.  相似文献   

20.
The effect of the most hydrophobic bile acid–lithocholic–as an inducer of two different Ca2+-dependent inner membrane permeability systems was studied on isolated rat liver mitochondria. It is shown that the addition of lithocholic acid at a concentration of 20 μM to the Ca2+-loaded mitochondria leads to swelling of the organelles, rapid release of Ca2+ from the matrix and almost complete collapse of Δψ. Mitochondrial pore blocker cyclosporin A (CsA) eliminates mitochondrial swelling but has no effect on the process of Ca2+ release and Δψ collapse. In the absence of Ca2+ lithocholic acid causes only a transient decrease of Δψ with subsequent complete recovery. Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, which blocks Ca2+ influx into the matrix, prevents mitochondrial swelling induced by lithocholic acid. At the same time, ruthenium red, which is added before lithocholic acid to the Ca2+-preloaded mitochondria, does not affect the swelling of the organelles but reduces the CsA-insensitive drop in Δψ. It is concluded that lithocholic acid is able to induce two Ca2+-dependent energy dissipation systems in the inner membrane of liver mitochondria: CsA-sensitive mitochondrial pore and CsA-insensitive permeability, which exhibits sensitivity to ruthenium red. It is found that the effect of this bile acid as an inductor of CsA-sensitive mitochondrial pore is not associated with the modulation of Pi effects. It is assumed that CsA-insensitive action of lithocholic acid is associated with the induction of Ca2+ efflux from the matrix in exchange for protons. In this case, the energy-dependent Ca2+ transport in the opposite direction with the participation of mitochondrial calcium uniporter sensitive to ruthenium red leads to the formation of calcium cycle and thereby to energy dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号