首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 5'AMP-activated protein kinase (AMPK) activation is involved in the meiotic maturation of oocytes in the ovaries of mice and pigs. However, its effects on the oocyte appear to be species-specific. We investigated the patterns of AMPK and mitogen-activated protein kinases (MAPK3/1) phosphorylation during bovine in vitro maturation (IVM) and the effects of metformin, an AMPK activator, on oocyte maturation in cumulus-oocyte complexes (COCs) and denuded bovine oocytes (DOs). In bovine COCs, PRKAA Thr172 phosphorylation decreased, whereas MAPK3/1 phosphorylation increased in both oocytes and cumulus cells during IVM. Metformin (5 and 10 mM) arrested oocytes at the GV stage in COCs but not in DOs. In COCs, this arrest was associated with the inhibition of cumulus cell expansion, an increase in PRKAA Thr172 phosphorylation, and a decrease in MAPK3/1 phosphorylation in both oocytes and cumulus cells. However, the addition of compound C (10 muM), an inhibitor of AMPK, accelerated the initiation of the GV breakdown (GVBD) process without any alteration of MAPK3/1 phosphorylation in oocytes from bovine COCs. Metformin decreased AURKA and CCNB1 protein levels in oocytes. Moreover, after 1 h of IVM, metformin decreased RPS6 phosphorylation and increased EEF2 phosphorylation, suggesting that protein synthesis rates were lower in oocytes from metformin-treated COCs. Most oocytes were arrested after the GVBD stage following the treatment of COCs with the MEK inhibitor, U0126 (100 micromoles). Thus, in bovine COCs, metformin blocks meiotic progression at the GV stage, activates PRKAA, and inhibits MAPK3/1 phosphorylation in both the oocytes and cumulus cells during IVM. Moreover, cumulus cells were essential for the effects of metformin on bovine oocyte maturation, whereas MAPK3/1 phosphorylation was not.  相似文献   

2.
In eukaryotes, mitosis entry is induced by activation of maturation‐promoting factor (MPF), which is regulated by a network of kinases and phosphatases. It has been suggested that Greatwall (GWL) kinase was crucial for the M‐phase entry and could maintain cyclin B–Cdc2 activity through regulation of protein phosphatase 2A (PP2A), a counteracting phosphatase of MPF. Here, the role of GWL was assessed during release of mouse oocytes from prophase I arrest. GWL was crucial for meiotic maturation in mouse oocytes. As a positive regulator for meiosis resumption, GWL was continually expressed in germinal vesicle (GV) and MII stage oocytes and two‐cell stage embryos. Additionally, GWL localized to the nucleus and dispersed into cytoplasm during GV breakdown (GVBD). Furthermore, downregulation of GWL or overexpression of catalytically‐inactive GWL inhibited partial meiotic maturation. This prophase I arrest induced by GWL depletion could be rescued by the PP2A inhibition. However, both GWL‐depleted and rescued oocytes had severe spindle defects that hardly reached MII. In contrast, oocytes overexpressing wild‐type GWL resumed meiosis and progressed to MII stage. Thus, our data demonstrate that GWL acts in a pathway with PP2A which is essential for prophase I exit and metaphase I microtubule assembly in mouse oocytes.  相似文献   

3.
Kinex antibody microarray analyses was used to investigate the regulation of 188 protein kinases, 24 protein phosphatases, and 170 other regulatory proteins during meiotic maturation of immature germinal vesicle (GV+) pig oocytes to maturing oocytes that had completed meiosis I (MI), and fully mature oocytes arrested at metaphase of meiosis II (MII). Increases in apparent protein levels of protein kinases accounted for most of the detected changes during the GV to MI transition, whereas reduced protein kinase levels and increased protein phosphorylation characterized the MI to MII transition. During the MI to MII period, many of the MI-associated increased levels of the proteins and phosphosites were completely or partially reversed. The regulation of these proteins were also examined in parallel during the meiotic maturation of bovine, frog, and sea star oocytes with the Kinex antibody microarray. Western blotting analyses confirmed altered expression levels of Bub1A, IRAK4, MST2, PP4C, and Rsk2, and the phosphorylation site changes in the kinases Erk5 (T218 + Y220), FAK (S722), GSK3-beta (Y216), MEK1 (S217 + S221) and PKR1 (T451), and nucleophosmin/B23 (S4) during pig oocyte maturation.  相似文献   

4.
Calcium signal is important for the regulation of meiotic cell cycle in oocytes, but its downstream mechanism is not well known. The functional roles of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes were studied by drug treatment, Western blot analysis, kinase activity assay, indirect immunostaining, and confocal microscopy. The results indicated that meiotic resumption of both cumulus-enclosed and denuded oocytes was prevented by CaMKII inhibitor KN-93, Ant-AIP-II, or CaM antagonist W7 in a dose-dependent manner, but only germinal vesicle breakdown (GVBD) of denuded oocytes was inhibited by membrane permeable Ca2+ chelator BAPTA-AM. When the oocytes were treated with KN-93, W7, or BAPTA-AM after GVBD, the first polar body emission was inhibited. A quick elevation of CaMKII activity was detected after electrical activation of mature pig oocytes, which could be prevented by the pretreatment of CaMKII inhibitors. Treatment of oocytes with KN-93 or W7 resulted in the inhibition of pronuclear formation. The possible regulation of CaMKII on maturation promoting factor (MPF), mitogen-activated protein kinase (MAPK), and ribosome S6 protein kinase (p90rsk) during meiotic cell cycles of pig oocytes was also studied. KN-93 and W7 prevented the accumulation of cyclin B and the full phosphorylation of MAPK and p90rsk during meiotic maturation. When CaMKII activity was inhibited during parthenogenetic activation, cyclin B, the regulatory subunit of MPF, failed to be degraded, but MAPK and p90rsk were quickly dephosphorylated and degraded. Confocal microscopy revealed that CaM and CaMKII were localized to the nucleus and the periphery of the GV stage oocytes. Both proteins were concentrated to the condensed chromosomes after GVBD. In oocytes at the meiotic metaphase MI or MII stage, CaM distributed on the whole spindle, but CaMKII was localized only on the spindle poles. After transition into anaphase, both proteins were translocated to the area between separating chromosomes. All these results suggest that CaMKII is a multifunctional regulator of meiotic cell cycle and spindle assembly and that it may exert its effect via regulation of MPF and MAPK/p90rsk activity during the meiotic maturation and activation of pig oocytes.  相似文献   

5.
Cell-cycle transition at G2-M is controlled by MPF (M-phase-promoting factor), a complex consisting of the Cdc2 kinase and a B-type cyclin. We have shown that in mice, targeted disruption of an A-type cyclin gene, cyclin A1, results in a block of spermatogenesis prior to the entry into metaphase I. The meiotic arrest is accompanied by a defect in Cdc2 kinase activation at the G2--M transition, raising the possibility that a cyclin A1-dependent process dictates the activation of MPF. Here we show that like Cdc2, the expression of B-type cyclins is retained in cyclin A1-deficient spermatocytes, while their associated kinases are kept at inactive states. Treatment of arrested germ cells with the protein phosphatase type-1 and -2A inhibitor okadaic acid restores the MPF activity and induces entry into M phase and the formation of normally condensed chromosome bivalents, concomitant with hyperphosphorylation of Cdc25 proteins. Conversely, inhibition of tyrosine phosphatases, including Cdc25s, by vanadate suppresses the okadaic acid-induced metaphase induction. The highest levels of Cdc25A and Cdc25C expression and their subcellular localization during meiotic prophase coincide with that of cyclin A1, and when overexpressed in HeLa cells, cyclin A1 coimmunoprecipitates with Cdc25A. Furthermore, the protein kinase complexes consisting of cyclin A1 and either Cdc2 or Cdk2 phosphorylate both Cdc25A and Cdc25C in vitro. These results suggest that in normal meiotic male germ cells, cyclin A1 participates in the regulation of other protein kinases or phosphatases critical for the G2-M transition. In particular, it may be directly involved in the initial amplification of MPF through the activating phosphorylation on Cdc25 phosphatases.  相似文献   

6.
Progression through meiosis requires two waves of maturation promoting factor (MPF) activity corresponding to meiosis I and meiosis II. Frog oocytes contain a pool of inactive "pre-MPF" consisting of cyclin-dependent kinase 1 bound to B-type cyclins, of which we now find three previously unsuspected members, cyclins B3, B4 and B5. Protein synthesis is required to activate pre-MPF, and we show here that this does not require new B-type cyclin synthesis, probably because of a large maternal stockpile of cyclins B2 and B5. This stockpile is degraded after meiosis I and consequently, the activation of MPF for meiosis II requires new cyclin synthesis, principally of cyclins B1 and B4, whose translation is strongly activated after meiosis I. If this wave of new cyclin synthesis is ablated by antisense oligonucleotides, the oocytes degenerate and fail to form a second meiotic spindle. The effects on meiotic progression are even more severe when all new protein synthesis is blocked by cycloheximide added after meiosis I, but can be rescued by injection of indestructible B-type cyclins. B-type cyclins and MPF activity are required to maintain c-mos and MAP kinase activity during meiosis II, and to establish the metaphase arrest at the end of meiotic maturation. We discuss the interdependence of c-mos and MPF, and reveal an important role for translational control of cyclin synthesis between the two meiotic divisions.  相似文献   

7.
After a long period of quiescence at dictyate prophase I, termed the germinal vesicle (GV) stage, mammalian oocytes reenter meiosis by activating the Cdc2–cyclin B complex (maturation-promoting factor [MPF]). The activity of MPF is regulated by Wee1/Myt1 kinases and Cdc25 phosphatases. In this study, we demonstrate that the sequestration of components that regulate MPF activity in distinct subcellular compartments is essential for their function during meiosis. Down-regulation of either Wee1B or Myt1 causes partial meiotic resumption, and oocytes reenter the cell cycle only when both proteins are down-regulated. Shortly before GV breakdown (GVBD), Cdc25B is translocated from the cytoplasm to the nucleus, whereas Wee1B is exported from the nucleus to the cytoplasm. These movements are regulated by PKA inactivation and MPF activation, respectively. Mislocalized Wee1B or Myt1 is not able to maintain meiotic arrest. Thus, cooperation of Wee1B, Myt1, and Cdc25 is required to maintain meiotic arrest and relocation of these components before GVBD is necessary for meiotic reentry.  相似文献   

8.
The main limit of in vitro production of domestic mammal embryos comes from the low capacity of in vitro matured oocytes to develop after fertilization. As soon as they are separated from follicular environment, oocytes spontaneously resume meiosis without completion of their terminal differentiation. Roscovitine (ROS), an inhibitor of M-phase promoting factor (MPF) kinase activity reversibly blocks the meiotic resumption in vitro. However, in cattle maturing oocytes several cellular events such as protein synthesis and phosphorylation, chromatin condensation and nuclear envelope folding escape ROS inhibition suggesting the alternative pathways in oocyte maturation. We compared the level of synthesis and phosphorylation of several protein kinases during bovine cumulus oocyte complex (COC) maturation in vitro in the presence or not of epidermal growth factor (EGF) and ROS. We showed that during the EGF-stimulated maturation, ROS neither affected the decrease of EGF receptor (EGFR) nor did inhibit totally its phosphorylation in cumulus cells and also did not totally eliminate tyrosine phosphorylation in oocytes. However, ROS did inhibit the Phosphoinositide 3-kinase (PI3) activity when oocytes mature without EGF. Accumulation of Akt/PKB (protein kinase B), JNK1/2 (jun N-terminal kinases) and Aurora-A in oocytes during maturation was not affected by ROS. However, the phosphorylation of Akt but not JNKs was diminished in ROS-treated oocytes. Thus, PI3 kinase/Akt, JNK1/2 and Aurora-A are likely to be involved in the regulation of bovine oocyte maturation and some of these pathways seem to be independent to MPF activity and meiotic resumption. This complex regulation may explain the partial meiotic arrest of ROS-treated oocytes and the accelerated maturation observed after such treatment.  相似文献   

9.
All cells undergoing the transition from interphase to metaphase have been postulated to contain a "maturation-promoting factor" (MPF) capable of causing meiotic maturation when injected into immature oocytes. We have shown in an accompanying paper (A. Picard, M. C. Harricane, J. C. Labbe, and M. Doreé, 1988, Dev. Biol. 128, 121-128) that the basic oscillator driving the cell cycle still operates in maturing starfish oocytes and fertilized eggs in the absence of germinal vesicle (GV) material. Under such conditions of enucleation, we now show, however, that MPF activity cannot be detected after hormonal stimulation of prophase-arrested oocytes in Astropecten or after the normal time of second meiotic cleavage in Marthasterias. In contrast, cell cycles occur with the production of transferable MPF activity in embryos from which both pronuclei have been removed after fertilization. Reinjection of the entire contents of a GV after the normal time of second meiotic cleavage restores the ability of cytoplasm to induce meiotic maturation in immature recipient oocytes after transfer. Transduction of the hormonal stimulus at the level of the plasma membrane, stimulation of the phosphorylation of cytoplasmic proteins, and activation of a cycling Ca2+- and cyclic nucleotide-independent histone kinase still occur in the absence of GV material. Since previous studies have demonstrated that the presence of GV material in the recipient oocytes is absolutely required in starfish for the amplification of microinjected MPF (Kishimoto et al., 1981; Picard and Doree, 1984), we propose that some unidentified component of the GV is required, at least after the normal time of second meiotic cleavage in donor oocytes and at any time in recipient oocytes, for the successful transfer of MPF activity in starfish.  相似文献   

10.
Signal transduction cascades involved in regulation of the cell cycle machinery are poorly understood. In the Xenopus oocyte model, meiotic maturation is triggered by MPF, a complex of p34(cdc2)-cyclin B, which is activated in response to a progesterone signal by largely unknown mechanisms. We have previously shown that the p21-activated kinase (PAK) family negatively regulates the MPF amplification loop. In this study, we identify the endogenous PAK2 as a key enzyme in this regulation and describe the pathways by which PAK2 is regulated. We show that the small GTPase Cdc42 is required for maintenance of active endogenous X-PAK2 in resting stage VI oocytes, whereas Rac1 is not involved in this regulation. During the process of maturation, X-PAK2 phosphorylation results in its inactivation and allows maturation to proceed to completion. Activation of mitogen-activated protein kinase and cyclin B-p34(cdc2) is coincident with X-PAK2 inactivation, and purified active MPF inhibits X-PAK2, demonstrating the existence of a new positive feedback loop. Our results confirm and extend the importance of p21-activated kinases in the control of the G(2)/M transition. We hypothesize that the X-PAK2/Cdc42 pathway could link p34(cdc2) activity to the major cytoskeleton rearrangements leading to spindle migration and anchorage to the animal pole cortex.  相似文献   

11.
Changes in the extent of protein phosphorylation and their possible correlation with changes in the activity of maturation-promoting (MPF) factor were investigated throughout meiotic maturation and following activation of amphibian and starfish oocytes. Despite several exceptions in the pattern of phosphorylation of individual proteins, high and low levels of protein phosphorylation were found to be correlated with high and low levels of MPF activity. Both the extent of protein phosphorylation and MPF activity were found to drop upon parthenogenetic activation and to cycle synchronously thereafter in the amphibian. In contrast no drop in MPF activity or in the extent of protein phosphorylation was observed following activation of starfish oocytes with ionophore A23187. This suggests that changes of protein phosphorylation and of MPF activity are rather related to the progression of the cell cycle than directly to Ca2+-dependent activation reaction. In amphibians global protein kinase activity in homogenates was found to drop with MPF activity following activation. Changes in the ratio of threonine vs serine phosphorylation were also investigated during the course of meiotic maturation and activation in both amphibian and starfish oocytes: changes in the activity of MPF were found to be better correlated with changes in threonine than serine phosphorylation.  相似文献   

12.
Fully grown competent mouse oocytes spontaneously resume meiosis in vitro when released from their follicular environment, in contrast to growing incompetent oocytes, which remain blocked in prophase I. The cell cycle regulators, maturation promoting factor (MPF; [p34(cdc2)/cyclin B kinase]) and mitogen-activated protein (MAP) kinases (p42(MAPK) and p44(MAPK)), are implicated in meiotic competence acquisition. Incompetent oocytes contain levels of p42(MAPK), p44(MAPK), and cyclin B proteins that are comparable to those in competent oocytes, but their level of p34(cdc2) is markedly lower. Okadaic acid (OA), an inhibitor of phosphatases 1 and 2A, induces meiotic resumption of incompetent oocytes. The kinetics and the percentage of germinal vesicle breakdown depends on whether or not oocytes have been cultured before OA treatment. We show that the fast kinetics and the high percentage of germinal vesicle breakdown induced by OA following 2 days in culture is neither the result of an accumulation of p34(cdc2) protein, nor to the activation of MPF in incompetent oocytes, but rather by the premature activation of MAP kinases. Indeed, a specific inhibitor of MAPK kinase (MEK) activity, PD98059, inhibits activation of MAP kinases and meiotic resumption. Altogether, these results indicate that the MEK-MAPK pathway is implicated in OA-induced meiotic resumption of incompetent mouse oocytes, and that the MEK-MAPK pathway can induce meiotic resumption in the absence of MPF activation.  相似文献   

13.
To investigate the role of the germinal vesicle (GV) on in vitro maturation (IVM) of rat oocytes, we examined protein synthesis during IVM by comparing polypeptide patterns in control and enucleated oocytes using one and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Separation of polypeptides extracted from the cytoplasm of GV by one-dimensional SDS-PAGE revealed that a 55 kDa polypeptide was present only in the GVs of rat oocytes. At 0, 12, 24, 36, and 44 hr after PMSG injection, prior to the initiation of maturation, enucleated oocytes synthesized the same major polypeptides as cumulus intact (CI) oocytes. During meiotic maturation, no major changes were detected in protein synthesis from prophase (GV stage) to prometaphase I (0–6 hr IVM). However, after entry into prometaphase I (7 hr IVM), striking changes were seen; a 24 kDa polypeptide disappeared and expression of a 34 kDa polypeptide became stronger. This pattern lasted until metaphase II. We detected no major differences in the pattern of protein synthesis between CI and enucleated oocytes using two-dimensional PAGE. These results indicate that protein synthesis in the maturing rat oocyte is controlled by cytoplasmic regulators rather than intrinsic nuclear components. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Maturation-promoting factor (MPF) activity and the protein phosphorylation pattern were monitored throughout the time course of meiotic maturation following hormonal stimulation of prophase-arrested starfish oocytes. MFP activity disappeared or decreased dramatically during the first and second meiotic cleavages. MPF activity came back to a very high level after the first but not the second meiotic cleavage. The state of protein phosphorylation was monitored using both tracer experiments and direct measurements of the absolute amount of phosphate in phosphoproteins. High and low levels of MPF activities were, respectively, associated with high and low levels of protein phosphorylation. It is suggested that the turn over of phosphate already bound to proteins in prophase-blocked oocytes does not change following hormone addition.  相似文献   

15.
c-Mos and cyclin B/cdc2 connections during Xenopus oocyte maturation.   总被引:2,自引:0,他引:2  
Fully-grown G2 arrested Xenopus oocytes can be induced to enter and progress into meiotic cell cycle by progesterone stimulation. This process is termed oocyte maturation. An early response to progesterone is the synthesis of the onco-protein c-Mos, defined as the candidate initiator of Xenopus oocyte maturation, which triggers the MAPK cascade, MPF activation and promotes CSF activity. Here we review our current knowledge on the synthesis, activation and functions of c-Mos in connection with MPF activation during maturation. We also discuss our recent results concerning the dispensability of cyclin B degradation in meiosis I-meiosis II transition and the stabilization of c-Mos through its direct phosphorylation by cyclin B/cdc2.  相似文献   

16.
The kinetics of nuclear maturation, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes were examined. A further objective was to determine the duration of the meiotic stages during the maturation process. Porcine and bovine cumulus-oocyte complexes (COCs) were incubated in TCM 199 supplemented with 20% (v/v) heat inactivated fetal calf serum (FCS), 0.05microg/ml gentamycin, 0.02mg/ml insulin, 2.5microg/ml FSH and 5microg/ml LH. COCs were removed from the culture media in hourly intervals starting immediately after recovery from the follicle until 24 (bovine) or 48h (porcine) of culture. Oocytes were either fixed to evaluate the maturation status or the activity of MPF, assessed by its histone H1 kinase activity, and MAP kinase were determined by a radioactive assay simultaneously. In oocytes of both species, the MPF activity oscillated during the culture period with two maxima corresponding with the two metaphases: between 27-32 and after 46h (porcine) and between 6-9 and after 22h (bovine). There was a temporary decline in activity after 33-38 (porcine) and after 19h (bovine), which corresponded with anaphase I and telophase I. MAP kinase activity increased during the whole culture period and reached maximum levels after 47 (porcine) and after 22h (bovine). In porcine oocytes, the MAP kinase was activated before GVBD and MPF activation. In bovine oocytes, MPF and MAP kinase were activated at approximately the same time as the GVBD (8-9h of incubation). In average porcine, oocytes remain 23.4h in the germinal vesicle (GV) stage (13h in GV I, 5.7h in GV II, 3.2h in GV III and 1.5h in GV IV), 0.9h in diakinese, 9.6h in the metaphase I, 2.8h in anaphase I and 1.9h in telophase I of the first meiotic division. In bovine oocytes, the temporal distribution of the meiotic stages were 8.5h for the GV stage, 1.2h for diakinese, 8.3h for metaphase I, 1.6h for anaphase I and 1.9h for telophase I. These results indicate that the duration of the meiotic stages differs between the species and that MAP kinase is activated before MPF and GVBD in porcine oocytes.  相似文献   

17.
ABSTRACT The development of an immature oocyte into a fertilizable gamete is a process known as meiotic maturation. In vertebrates, it corresponds to the transition from the prophase arrest of the first meiotic division (usually considered as a late G2 phase) to the metaphase arrest of the second meiotic division. This transition is controlled by modulating the activity of the cyclin B-Cdc2 complex, MPF (M-phase promoting factor), the universal regulator of the G2/M transition. Meiotic maturation of frog oocytes is triggered by steroid hormones through a rapid, necessary and sufficient suppression of PKA and requires ongoing protein synthesis. A long-standing question has been to identify key protein(s) required to trigger the activation of MPF in response to the hormonal signal. Here we will discuss data supporting the view that steroids bring about meiotic maturation through functionally redundant pathways involving synthesis of Mos or of cyclin proteins, reinforcing the robustness of the system.  相似文献   

18.
Roscovitine, a specific inhibitor of MPF kinase activity, has been shown to block efficiently and reversibly the meiotic resumption of oocytes from different species, including cattle. In view to verify that oocytes maintain germinal vesicle like molecular activities under roscovitine treatment, we compared in the present study the M-phase Promoting Factor (MPF) and Mitogen Activated Protein (MAP) kinase activities; protein synthesis and phosphorylation patterns in oocytes and cumulus cells; and CDK1 and Cyclin B messengers storage under control culture and under roscovitine inhibition. We observed that roscovitine induced a full and reversible inhibition of MPF kinase activity and of the activating phosphorylation of both ERK1/2 MAPK. During in vivo maturation, there was a highly significant increase in the relative mRNA level of both cyclin B1 and CDK1 whereas during in vitro culture, the relative amount of CDK1 messenger was reduced. These messengers may be used as markers for the optimization of in vitro maturation treatment. Roscovitine reversibly prevented this drop in relative quantities of CDK1 messenger. Oocytes cultured in the presence of roscovitine maintained a GV like profile of protein synthesis except that two proteins of 48 and 64 kDa specific of matured oocytes also appeared under roscovitine treatment. However, roscovitine did not prevent most of the modifications of protein phosphorylation pattern observed during maturation. In conclusion, results of this study revealed that the use of roscovitine did not prevent all the events related to maturation of bovine oocytes.  相似文献   

19.
Mitogen-activated protein kinase (MAP kinase) is a serine/threonine kinase whose enzymatic activity is thought to play a crucial role in mitogenic signal transduction and also in the progesterone-induced meiotic maturation of Xenopus oocytes. We have purified MAP kinase from Xenopus oocytes and have shown that the protein is present in metaphase ll oocytes under two different forms: an inactive 41-kD protein able to autoactivate and to autophosphorylate in vitro, and an active 42-kD kinase resolved into two tyrosine phosphorylated isoforms on 2D gels. During meiotic maturation, MAP kinase becomes tyrosine phosphorylated and activated following the activation of the M-phase promoting factor (MPF), a complex between the p34cdc2 kinase and cyclin B. In vivo, MAP kinase activity displays a different stability in metaphase l and in metaphase II: protein synthesis is required to maintain MAP kinase activity in metaphase I but not in metaphase II oocytes. Injection of either MPF or cyclin B into prophase oocytes promotes tyrosine phosphorylation of MAP kinase, indicating that its activation is a downstream event of MPF activation. In contrast, injection of okadaic acid, which induces in vivo MPF activation, promotes only a very weak tyrosine phosphorylation of MAP kinase, suggesting that effectors other than MPF are required for the MAP kinase activation. Moreover, in the absence of protein synthesis, cyclin B and MPF are unable to promote in vivo activation of MAP kinase, indicating that this activation requires the synthesis of new protein(s). © 1993 Wiley-Liss, Inc.  相似文献   

20.
Xenopus oocyte maturation does not require new cyclin synthesis   总被引:6,自引:0,他引:6       下载免费PDF全文
Progesterone induces fully grown, stage VI, Xenopus oocytes to pass through meiosis I and arrest in metaphase of meiosis II. Protein synthesis is required twice in this process: in order to activate maturation promoting factor (MPF) which induces meiosis I, and then again after the completion of meiosis I to reactivate MPF in order to induce meiosis II. We have used antisense oligonucleotides to destroy maternal stores of cyclin mRNAs, and demonstrate that new cyclin synthesis is not required for entry into either meiosis I or II. This finding is consistent with the demonstration that stage VI oocytes contain a store of B-type cyclin polypeptides (Kobayashi, H., J. Minshull, C. Ford, R. Golsteyn, R. Poon, and T. Hunt. 1991. J. Cell Biol. 114:755-765). Although approximately 70% of cyclin B2 is destroyed at first meiosis, the surviving fraction, together with a larger pool of surviving cyclin B1, must be sufficient to allow the reactivation of MPF and induce entry into second meiotic metaphase. Since stage VI oocytes do not contain any cyclin A, our results show that cyclin A is not required for meiosis in Xenopus. We discuss the possible nature of the proteins whose synthesis is required to induce meiosis I and II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号