共查询到20条相似文献,搜索用时 0 毫秒
1.
Grunwald GK Bruce SL Jiang L Strand M Rabinovitch N 《Biometrical journal. Biometrische Zeitschrift》2011,53(4):578-594
We propose a likelihood-based model for correlated count data that display under- or overdispersion within units (e.g. subjects). The model is capable of handling correlation due to clustering and/or serial correlation, in the presence of unbalanced, missing or unequally spaced data. A family of distributions based on birth-event processes is used to model within-subject underdispersion. A computational approach is given to overcome a parameterization difficulty with this family, and this allows use of common Markov Chain Monte Carlo software (e.g. WinBUGS) for estimation. Application of the model to daily counts of asthma inhaler use by children shows substantial within-subject underdispersion, between-subject heterogeneity and correlation due to both clustering of measurements within subjects and serial correlation of longitudinal measurements. The model provides a major improvement over Poisson longitudinal models, and diagnostics show that the model fits well. 相似文献
2.
M. Tariqul Hasan Gary Sneddon Renjun Ma 《Biometrical journal. Biometrische Zeitschrift》2009,51(6):946-960
Analysis of longitudinal data with excessive zeros has gained increasing attention in recent years; however, current approaches to the analysis of longitudinal data with excessive zeros have primarily focused on balanced data. Dropouts are common in longitudinal studies; therefore, the analysis of the resulting unbalanced data is complicated by the missing mechanism. Our study is motivated by the analysis of longitudinal skin cancer count data presented by Greenberg, Baron, Stukel, Stevens, Mandel, Spencer, Elias, Lowe, Nierenberg, Bayrd, Vance, Freeman, Clendenning, Kwan, and the Skin Cancer Prevention Study Group[New England Journal of Medicine 323 , 789–795]. The data consist of a large number of zero responses (83% of the observations) as well as a substantial amount of dropout (about 52% of the observations). To account for both excessive zeros and dropout patterns, we propose a pattern‐mixture zero‐inflated model with compound Poisson random effects for the unbalanced longitudinal skin cancer data. We also incorporate an autoregressive of order 1 correlation structure in the model to capture longitudinal correlation of the count responses. A quasi‐likelihood approach has been developed in the estimation of our model. We illustrated the method with analysis of the longitudinal skin cancer data. 相似文献
3.
Summary. Continuous proportional data arise when the response of interest is a percentage between zero and one, e.g., the percentage of decrease in renal function at different follow‐up times from the baseline. In this paper, we propose methods to directly model the marginal means of the longitudinal proportional responses using the simplex distribution of Barndorff‐Nielsen and Jørgensen that takes into account the fact that such responses are percentages restricted between zero and one and may as well have large dispersion. Parameters in such a marginal model are estimated using an extended version of the generalized estimating equations where the score vector is a nonlinear function of the observed response. The method is illustrated with an ophthalmology study on the use of intraocular gas in retinal repair surgeries. 相似文献
4.
《基因组蛋白质组与生物信息学报(英文版)》2019,17(4):381-392
Brain science accelerates the study of intelligence and behavior, contributes fundamental insights into human cognition, and offers prospective treatments for brain disease. Faced with the challenges posed by imaging technologies and deep learning computational models, big data and high-performance computing (HPC) play essential roles in studying brain function, brain diseases, and large-scale brain models or connectomes. We review the driving forces behind big data and HPC methods applied to brain science, including deep learning, powerful data analysis capabilities, and computational performance solutions, each of which can be used to improve diagnostic accuracy and research output. This work reinforces predictions that big data and HPC will continue to improve brain science by making ultrahigh-performance analysis possible, by improving data standardization and sharing, and by providing new neuromorphic insights. 相似文献
5.
Shkedy Z Vandersmissen V Molenberghs G Van Craenendonck H Aerts N Steckler T Bijnens L 《Biometrical journal. Biometrische Zeitschrift》2005,47(3):286-298
The differential reinforcement of low-rate 72 seconds schedule (DRL-72) is a standard behavioral test procedure for screening potential antidepressant compounds. The protocol for the DRL-72 experiment, proposed by Evenden et al. (1993), consists of using a crossover design for the experiment and one-way ANOVA for the statistical analysis. In this paper we discuss the choice of several crossover designs for the DRL-72 experiment and propose to estimate the treatment effects using either generalized linear mixed models (GLMM) or generalized estimating equation (GEE) models for clustered binary data. 相似文献
6.
Airlane P. Alencar Julio M. Singer Francisco Marcelo M. Rocha 《Biometrical journal. Biometrische Zeitschrift》2012,54(2):214-229
The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretest–posttest longitudinal data. In particular, we consider log‐normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE‐based models may be preferable when the goal is to compare the marginal expected responses. 相似文献
7.
Myungok Lee Keunbaik Lee JungBok Lee 《Biometrical journal. Biometrische Zeitschrift》2014,56(2):230-242
In longitudinal studies investigators frequently have to assess and address potential biases introduced by missing data. New methods are proposed for modeling longitudinal categorical data with nonignorable dropout using marginalized transition models and shared random effects models. Random effects are introduced for both serial dependence of outcomes and nonignorable missingness. Fisher‐scoring and Quasi–Newton algorithms are developed for parameter estimation. Methods are illustrated with a real dataset. 相似文献
8.
An important problem in agronomy is the study of longitudinal data on the growth curve of the weight of cattle through time, possibly taking into account the effect of other explanatory variables such as treatments and time. In this paper, a Bayesian approach for analysing longitudinal data is proposed. It takes into account regression structures on the mean and the variance‐covariance matrix of normal observations. The approach is based on the modeling strategy suggested by Pourahmadi (1999, Biometrika 86, 667–690). After revising this methodology, we present the Bayesian approach used to fit the models, based on a generalization of the Metropolis‐Hastings algorithm of Cepeda and Gamerman (2000, Brazilian Journal of Probability and Statistics, 14 , 207–221). The approach is used to the study of growth and development of a group of deaf children. The paper is concluded with a few proposed extensions. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
9.
Tests for species interactions that involve the comparison of a statistic calculated from observed matrix of species presences and absences with the distribution of the same statistic generated from a null model have been used by ecologists for about 30 years. We argue that the validity of these tests requires a specific definition of independence. In particular, we note that an assumption that is often made is that all presence–absence matrices with the same row and column totals are equally likely if there is no interaction. However, we show using a simple model for species presences and absences without any species interactions that, in general, this assumption should be made with caution. Our model incorporates a definition of independence, allowing the computation of probabilities of different patterns in the null matrices. Other definitions of independence are possible; one of them is outlined using a new generalized linear model approach for carrying out tests applicable to different null models with or without the assumption of keeping row and column totals fixed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
10.
11.
12.
Xiao‐Feng Wang 《Biometrical journal. Biometrische Zeitschrift》2012,54(2):264-280
This paper is motivated from the analysis of neuroscience data in a study of neural and muscular mechanisms of muscle fatigue. Multidimensional outcomes of different natures were obtained simultaneously from multiple modalities, including handgrip force, electromyography (EMG), and functional magnetic resonance imaging (fMRI). We first study individual modeling of the univariate response depending on its nature. A mixed‐effects beta model and a mixed‐effects simplex model are compared for modeling the force/EMG percentages. A mixed‐effects negative‐binomial model is proposed for modeling the fMRI counts. Then, I present a joint modeling approach to model the multidimensional outcomes together, which allows us to not only estimate the covariate effects but also to evaluate the strength of association among the multiple responses from different modalities. A simulation study is conducted to quantify the possible benefits by the new approaches in finite sample situations. Finally, the analysis of the fatigue data is illustrated with the use of the proposed methods. 相似文献
13.
14.
15.
A semiparametric mixed effects regression model is proposed for the analysis of clustered or longitudinal data with continuous, ordinal, or binary outcome. The common assumption of Gaussian random effects is relaxed by using a predictive recursion method (Newton and Zhang, 1999) to provide a nonparametric smooth density estimate. A new strategy is introduced to accelerate the algorithm. Parameter estimates are obtained by maximizing the marginal profile likelihood by Powell's conjugate direction search method. Monte Carlo results are presented to show that the method can improve the mean squared error of the fixed effects estimators when the random effects distribution is not Gaussian. The usefulness of visualizing the random effects density itself is illustrated in the analysis of data from the Wisconsin Sleep Survey. The proposed estimation procedure is computationally feasible for quite large data sets. 相似文献
16.
Auxiliary covariate data are often collected in biomedical studies when the primary exposure variable is only assessed on a subset of the study subjects. In this study, we investigate a semiparametric‐estimated likelihood estimation for the generalized linear mixed models (GLMM) in the presence of a continuous auxiliary variable. We use a kernel smoother to handle continuous auxiliary data. The method can be used to deal with missing or mismeasured covariate data problems in a variety of applications when an auxiliary variable is available and cluster sizes are not too small. Simulation study results show that the proposed method performs better than that which ignores the random effects in GLMM and that which only uses data in the validation data set. We illustrate the proposed method with a real data set from a recent environmental epidemiology study on the maternal serum 1,1‐dichloro‐2,2‐bis(p‐chlorophenyl) ethylene level in relationship to preterm births. 相似文献
17.
Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided. 相似文献
18.
Whether the aim is to diagnose individuals or estimate prevalence, many epidemiological studies have demonstrated the successful use of tests on pooled sera. These tests detect whether at least one sample in the pool is positive. Although originally designed to reduce diagnostic costs, testing pools also lowers false positive and negative rates in low prevalence settings and yields more precise prevalence estimates. Current methods are aimed at estimating the average population risk from diagnostic tests on pools. In this article, we extend the original class of risk estimators to adjust for covariates recorded on individual pool members. Maximum likelihood theory provides a flexible estimation method that handles different covariate values in the pool, different pool sizes, and errors in test results. In special cases, software for generalized linear models can be used. Pool design has a strong impact on precision and cost efficiency, with covariate-homogeneous pools carrying the largest amount of information. We perform joint pool and sample size calculations using information from individual contributors to the pool and show that a good design can severely reduce cost and yet increase precision. The methods are illustrated using data from a Kenyan surveillance study of HIV. Compared to individual testing, age-homogeneous, optimal-sized pools of average size seven reduce cost to 44% of the original price with virtually no loss in precision. 相似文献
19.
Apanasovich TV Ruppert D Lupton JR Popovic N Turner ND Chapkin RS Carroll RJ 《Biometrics》2008,64(2):490-500
Summary . Motivated by the spatial modeling of aberrant crypt foci (ACF) in colon carcinogenesis, we consider binary data with probabilities modeled as the sum of a nonparametric mean plus a latent Gaussian spatial process that accounts for short-range dependencies. The mean is modeled in a general way using regression splines. The mean function can be viewed as a fixed effect and is estimated with a penalty for regularization. With the latent process viewed as another random effect, the model becomes a generalized linear mixed model. In our motivating data set and other applications, the sample size is too large to easily accommodate maximum likelihood or restricted maximum likelihood estimation (REML), so pairwise likelihood, a special case of composite likelihood, is used instead. We develop an asymptotic theory for models that are sufficiently general to be used in a wide variety of applications, including, but not limited to, the problem that motivated this work. The splines have penalty parameters that must converge to zero asymptotically: we derive theory for this along with a data-driven method for selecting the penalty parameter, a method that is shown in simulations to improve greatly upon standard devices, such as likelihood crossvalidation. Finally, we apply the methods to the data from our experiment ACF. We discover an unexpected location for peak formation of ACF. 相似文献
20.
Summary The aim of this article is to develop a spatial model for multi‐subject fMRI data. There has been extensive work on univariate modeling of each voxel for single and multi‐subject data, some work on spatial modeling of single‐subject data, and some recent work on spatial modeling of multi‐subject data. However, there has been no work on spatial models that explicitly account for inter‐subject variability in activation locations. In this article, we use the idea of activation centers and model the inter‐subject variability in activation locations directly. Our model is specified in a Bayesian hierarchical framework which allows us to draw inferences at all levels: the population level, the individual level, and the voxel level. We use Gaussian mixtures for the probability that an individual has a particular activation. This helps answer an important question that is not addressed by any of the previous methods: What proportion of subjects had a significant activity in a given region. Our approach incorporates the unknown number of mixture components into the model as a parameter whose posterior distribution is estimated by reversible jump Markov chain Monte Carlo. We demonstrate our method with a fMRI study of resolving proactive interference and show dramatically better precision of localization with our method relative to the standard mass‐univariate method. Although we are motivated by fMRI data, this model could easily be modified to handle other types of imaging data. 相似文献