首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methanol extract of Ehretia dicksonii provided (10E, 12Z, 15Z)-9-hydroxy-10,12,15-octadecatrienoic acid methyl ester (1) which was isolated as an anti-inflammatory compound. Compound 1 suppressed 12-Otetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation on mouse ears at a dose of 500 microg (the inhibitory effect (IE) was 43%). Linolenic acid methyl ester did not inhibit this inflammation at the same dose. However, the related compounds of 1, (9Z,11E)-13hydroxy-9,11-octadecadienoic acid (5) and (9Z,llE)13-oxo-9,11-octadecadienoic acid (6), showed potent activity (IE500 microg of 63% and 79%, respectively). Compounds 1, 4 ((9Z, 12Z, 14E)-16-hydroxy-9,12,14-octadecatrienoic acid), 5 and 6 also showed inhibitory activity toward soybean lipoxygenase at a concentration of 10 microg/ml.  相似文献   

2.
The trimethylsilyl (TMS) peroxides/esters of the fatty acid hydroperoxides (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid (9-HPOD) and (9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid (13-HPOT) were subjected to gas chromatography-mass spectrometry and products formed by thermal rearrangements were identified. The main products were decadienals and the TMS derivatives of 13-oxo-9,11-tridecadienoic acid, epoxyalcohols, hemiacetals, and ketodienes. Oxy radicals as well as epoxyallylic radicals served as intermediates in the formation of these compounds. The thermal TMS peroxide conversions documented provided biomimetic models for enzymatic conversions of fatty acid hydroperoxides and also offered a method to generate an array of oxylipin derivatives of value as reference compounds in GC-MS studies.  相似文献   

3.
The methanol extract of Ehretia dicksonii provided (10E,12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic acid methyl ester (1) which was isolated as an anti-inflammatory compound. Compound 1 suppressed 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation on mouse ears at a dose of 500 μg (the inhibitory effect (IE) was 43%). Linolenic acid methyl ester did not inhibit this inflammation at the same dose. However, the related compounds of 1, (9Z,11E)-13-hydroxy-9,11-octadecadienoic acid (5) and (9Z,11E)- 13-oxo-9,11-octadecadienoic acid (6), showed potent activity (IE500 μg of 63% and 79%, respectively). Compounds 1, 4 ((9Z,12Z,14E)-16-hydroxy-9,12,14-octadecatrienoic acid), 5 and 6 also showed inhibitory activity toward soybean lipoxygenase at a concentration of 10 μg/ml.  相似文献   

4.
Incubation of 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid with corn (Zea mays L.) hydroperoxide dehydrase led to the formation of an unstable allene oxide derivative, 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid. Further conversion of the allene oxide yielded two major products, i.e. alpha-ketol 12-oxo-13-hydroxy-9(Z),15(Z)-octadecadienoic acid, and 12-oxo-10,15(Z)-phytodienoic acid (12-oxo-PDA). 12-Oxo-PDA was formed from allene oxide by two different pathways, i.e. spontaneous chemical cyclization, leading to racemic 12-oxo-PDA, and enzyme-catalyzed cyclization, leading to optically pure 12-oxo-PDA. The allene oxide cyclase, a novel enzyme in the metabolism of oxygenated fatty acids, was partially characterized and found to be a soluble protein with an apparent molecular weight of about 45,000 that specifically catalyzed conversion of allene oxide into 9(S),13(S)-12-oxo-PDA.  相似文献   

5.
The new route of the plant lipoxygenase pathway, directed specifically towards the ketodiene formation, was detected during in vitro experiments with Jerusalem artichoke (Helianthus tuberosus) tubers. Through this pathway (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoic acid (13-HPOD) is reduced to corresponding 13-hydroxy acid (13-HOD), which is in turn dehydrogenated into ketodiene (9Z,11E,13S)-13-oxo-9,11-octadecadienoic acid (13-KOD). Dehydrogenation of 13-HOD into 13-KOD was not dependent on the presence of either NAD or NADP, but was strongly dependent on the presence of oxygen. Under anoxic conditions, 13-HOD dehydrogenation was blocked, but addition of 2,6-dichlorophenolindophenol restored it. Sulfite addition fully suppressed the aerobic dehydrogenation of 13-HOD. Hydrogen peroxide is a by-product formed by the enzyme along with 13-KOD. These data suggest that the ketodiene biosynthesis in H. tuberosus tubers is catalyzed by flavin dehydrogenase. (9S,10E,12Z)-9-Hydroxy-10,12-octadecadienoic acid (9-HOD) is dehydrogenated by this enzyme as effectively as 13-HOD, while alpha-ketol, (9Z)-12-oxo-13-hydroxy-9-octadecenoic acid, and ricinoleic acid did not act as substrates for dehydrogenase. The enzyme was soluble and possessed a pH optimum at pH 7.0-9.0. The only 13-HOD dehydrogenase known so far was detected in rat colon. However, unlike the H. tuberosus enzyme, the rat dehydrogenase is NAD-dependent.  相似文献   

6.
Incubation of linoleic acid with the 105,000g particle fraction of the homogenate of the broad bean (Vicia faba L.) led to the formation of the following products: 13(S)-hydroxy-9(Z),11(E)-octadecadienoic acid, 9,10-epoxy-12(Z)-octadecenoic acid (9(R),10(S)/9(S)/10(R), 80/20), 12,13-epoxy-9(Z)-octadecenoic acid (12(S),13(R)/12(R)/13(S), 64/36), and 9,10-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid (9(S),10(R)/9(R),10(S), 91/9). Oleic acid incubated with the enzyme preparation in the presence of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid or cumene hydroperoxide was converted into 9,10-epoxyoctadecanoic acid (9(R),10(S)/9(S),10(R), 79/21). Two enzyme activities were involved in the formation of the products, an omega 6-lipoxygenase and a hydroperoxide-dependent epoxygenase. The lipoxygenase, but not the epoxygenase, was inhibited by low concentrations of 5,8,11,14-eicosatetraynoic acid and nordihydroguaiaretic acid. In contrast, the epoxygenase, but not the lipoxygenase, was readily inactivated in the presence of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid. Studies with 18O2-labeled 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid showed that the epoxide oxygens of 9,10-epoxyoctadecanoic acid and of 9,10-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid were derived from hydroperoxide and not from molecular oxygen.  相似文献   

7.
The metabolism of columbinic acid by various fatty acid oxidizing enzyme systems was studied. A cyclooxygenase product, 9-hydroxy-(5E,10E,12Z)-octadecatrienoic acid, was formed nearly quantitatively by ram seminal vesicle microsomes and in small amounts by washed human platelets. The major lipoxygenase product from washed human platelets, soybean lipoxygenase, and neonatal rat epidermal homogenate was 13-hydroxy-(5E,9Z,11E)-octadecatrienoic acid, although lesser quantities of other isomers differing in the double bond configurations were also identified by ultraviolet spectrophotometry and gas chromatography-mass spectroscopy. Topical application of the major lipoxygenase product to paws of essential fatty acid-deficient rats resulted in nearly as complete resolution of the scaly dermatitis as did the application of columbinic acid itself; the cyclooxygenase product was not at all effective.  相似文献   

8.
Guava (Psidium guajava) hydroperoxide lyase (HPL) preparations were incubated with [1-(14)C](9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid for 1 min at 0 degrees C, followed by rapid extraction/trimethylsilylation. Analysis of the trimethylsilylated products by gas chromatography-mass spectrometry and radio-high-performance liquid chromatography revealed a single predominant (14)C-labelled compound, identified by its (1)H-nuclear magnetic resonance, ultraviolet and mass spectra as the trimethylsilyl ether/ester of (9Z,11E)-12-hydroxy-9,11-dodecadienoic acid. Longer time incubations afford smaller yield of this enol due to its partial tautomerization into (9Z)-12-oxo-9-dodecenoic acid. The data obtained demonstrate that formation of (9Z)-12-oxo-9-dodecenoic acid in the HPL reaction is preceded by unstable enol oxylipin, and further suggest that hemiacetals are the true products of HPL catalysis.  相似文献   

9.
When linoleic and linolenic acid were incubated with a crude enzyme of marine green alga Ulva conglobata, the corresponding (R)-9-hydroperoxy-(10E, 12Z)-10, 12-octadecadienoic acid [(R)-9-HPODE] and (R)-9-hydroperoxy-(10E, 12Z, 15Z)-10, 12, 15-octadecatrienoic acid [(R)-9-HPOTrE] were formed with a high enantiomeric excess (>99%), respectively.  相似文献   

10.
Lipoxygenase was purified from ungerminated barley (variety 'Triumph'), yielding an active enzyme with a pI of 5.2 and a molecular mass of approximately 90 kDa. In addition to the 90 kDa band SDS-PAGE showed the presence of two further proteins of 63 kDa. Western blot analysis showed cross-reactivity of each of these proteins with polyclonal antisera against lipoxygenases from pea as well as from soybean, suggesting a close immunological relationship. The 63 kDa proteins appear to be inactive degradation products of the active 90-kDa enzyme. This barley lipoxygenase converts linoleic acid mainly into (9S)-(10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid, and arachidonic acid into (5S)-(6E,8Z,11Z,14Z)-5-hydroperoxy-6,8,11,14-eic osatetraenoic acid.  相似文献   

11.
We have identified and characterized a fatty acid, (9S,10E,12Z)-9-hydroxy-10,12-octadecadienoic acid (9-HODE) as a regulator of adenylate cyclase activity of human platelet membranes. This fatty acid was isolated from a methanolic extract of the plant Glechoma hederacea L. Labiatae (commonly known as 'lierre terrestre', 'ground ivy' or 'creeping Charlie'; it was identified by nuclear magnetic resonance and mass spectroscopy. This compound increased basal adenylate cyclase activity in platelet membranes about threefold and had an EC50 of 10-20 microM. This increase in adenylate cyclase activity occurred without a temporal lag, was reversible, and represented an increase in Vmax without a substantial change in Km for ATP, Mg2+ or Mn2+. In addition, 9-HODE additively or synergistically increased platelet adenylate cyclase activity in response to guanosine 5'-[beta,gamma-imido]triphosphate and forskolin, but the fatty acid failed to alter inhibition of adenylate cyclase activity mediated by epinephrine (alpha 2-adrenergic receptor). Studies of the interaction of 9-HODE with activation of platelet adenylate cyclase activity mediated by prostaglandin E1 (PGE1) and prostaglandin D2 (PGD2) indicated that this fatty acid produced a parallel shift in the concentration/response curve of PGE1 and PGD2 without altering maximal response, which was substantially greater than that observed with 9-HODE alone. From these results, we conclude that 9-HODE appears to be a partial agonist at PGE1 and PGD2 receptors on human platelets. We believe that this is a novel example of a plant-derived fatty acid which acts on cells to regulate adenylate cyclase via prostaglandin receptors.  相似文献   

12.
Membranes of intact rabbit reticulocytes and rat liver mitochondrial membranes oxygenated by the pure reticulocyte lipoxygenase contain 13-keto-9Z,11E-octadecadienoic acid and 9-keto-10E,12Z-octadecadienoic acid. In mitochondrial membranes not treated with lipoxygenase and in rabbit erythrocyte membranes these products were not detected. The chemical structure of the compounds has been identified by cochromatography with authentic standards on various types of HPLC columns, by uv and ir spectroscopy and GC/MS. In the membranes of rabbit reticulocytes up to 2% of the linoleate residues are present as its 9- and 13-keto derivatives. Most of the keto compounds (up to 90%) are esterified in the membrane ester lipids, only about 10% were found in the free fatty acid fraction. It is proposed that the keto dienoic fatty acids are formed via decomposition of hydroperoxy polyenoic fatty acids originating from the oxygenation of the membrane lipids by the reticulocyte lipoxygenase.  相似文献   

13.
Rabbit reticulocytes obtained by repeated bleeding metabolize exogenous [1-14C]linoleic acid and [1-14C]arachidonic acid by three different pathways. 1. Incorporation into cellular lipids: 50% of the fatty acids metabolized are incorporated into phospholipids, mainly phosphatidylcholine (32.8%) but also into phosphatidylethanolamine (12%), whereas about 10% of the radioactivity was found in the neutral lipids (mono- di- and triacylglycerols, but not cholesterol esters). 2. Formation of lipoxygenase products: 30% of the fatty acids metabolized are converted via the lipoxygenase pathway mainly to hydroxy fatty acids. Their formation is strongly inhibited by lipoxygenase inhibitors such as 5,8,11,14-eicosatetraynoic acid or nordihydroguaiaretic acid. Inhibition of the lipoxygenase pathway results in an increase of the incorporation of the fatty acids into cellular lipids. 15-Hydroxy-5,8,11,13(Z,Z,Z,E)eicosatetraenoic acid and 13-hydroxy-9,11(Z,E)-octadecadienoic acid are incorporated by reticulocytes into cellular lipids and also are metabolized via beta-oxidation. The metabolism of arachidonic acid and linoleic acid is very similar except for a higher incorporation of linoleic acid into neutral lipids. 3. beta-Oxidation of the exogenous fatty acids: about 10% of the polyenoic fatty acids are metabolized via beta-oxidation to 14CO2. Addition of 5,8,11,14-eicosatetraynoic acid strongly increased the 14CO2 formation from the polyenoic fatty acids whereas antimycin A completely abolished beta-oxidation. Erythrocytes show very little incorporation of unsaturated fatty acids into phospholipids and neutral lipids. Without addition of calcium and ionophore A23187 lipoxygenase metabolites could not be detected.  相似文献   

14.
An activity was found in mature soybean seeds (Glycine max L. cv Century) that cleaved 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid (13S-HPOT) into 13-oxo-9(Z),11(E)-tridecadienoic acid and two isomeric pentenols, 2(Z)-penten-1-ol and 1-penten-3-ol. Isomeric pentene dimers were also produced and were presumably derived from the combination of two pentene radicals. 13(S)-Hydroperoxy-9(Z),11(E)-octadecadienoic acid (13S-HPOD) was, by contrast, a poor substrate. Activity with 13S-HPOT increased 24-fold under anaerobic conditions reminiscent of a similar anaerobic promoted reaction of 13S-HPOD catalyzed by lipoxygenase (LOX) in the presence of linoleic acid. However, prior to ion-exchange chromatography, cleavage activity did not require linoleic acid. After separation by gel filtration followed by ion-exchange chromatography, cleavage activity was lost but reappeared in the presence of either linoleic acid or dithiothreitol. Under these conditions cleavage activity was coincident with the activity of types 1 and 2 LOX. LOX inhibitors suppressed the cleavage reaction in a manner similar to inhibition of LOX activity. Heat-generated alkoxyl radicals derived from either 13S-HPOT or 13S-HPOD afforded similar products and yields of 13-oxo-9(Z),11(E)-tridecadienoic acid compared to the enzymic reaction. The product 1-penten-3-ol may be the precursor of the "raw-bean" volatile ethylvinylketone.  相似文献   

15.
Sebaleic acid (5,8-octadecadienoic acid) is the major polyunsaturated fatty acid in human sebum and skin surface lipids. The objective of the present study was to investigate the metabolism of this fatty acid by human neutrophils and to determine whether its metabolites are biologically active. Neutrophils converted sebaleic acid to four major products, which were identified by their chromatographic properties, UV absorbance, and mass spectra as 5-hydroxy-(6E,8Z)-octadecadienoic acid (5-HODE), 5-oxo-(6E,8Z)-octadecadienoic acid (5-oxo-ODE), 5S,18-dihydroxy-(6E,8Z)-octadecadienoic acid, and 5-oxo-18-hydroxy-(6E,8Z)-octadecadienoic acid. The identities of these metabolites were confirmed by comparison of their properties with those of authentic chemically synthesized standards. Both neutrophils and human keratinocytes converted 5-HODE to 5-oxo-ODE. This reaction was stimulated in neutrophils by phorbol myristate acetate and in keratinocytes by oxidative stress (t-butyl-hydroperoxide). Both treatments dramatically elevated intracellular levels of NADP(+), the cofactor required by 5-hydroxyeicosanoid dehydrogenase. In keratinocytes, this was accompanied by a rapid increase in intracellular GSSG levels, consistent with the involvement of glutathione peroxidase. 5-Oxo-ODE stimulated calcium mobilization in human neutrophils and induced desensitization to 5-oxo-6,8,11,14-eicosatetraenoic acid but not leukotriene B(4), indicating that this effect was mediated by the OXE receptor. 5-Oxo-ODE and its 8-trans isomer were equipotent with 5-oxo-6,8,11,14-eicosatetraenoic acid in stimulating actin polymerization and chemotaxis in human neutrophils, whereas 5-HODE, 5-oxo-18-hydroxy-(6E,8Z)-octadecadienoic acid, and 5S,18-dihydroxy-(6E,8Z)-octadecadienoic acid were much less active. We conclude that neutrophil 5-lipoxygenase converts sebaleic acid to 5-HODE, which can be further metabolized to 5-oxo-ODE by 5-hydroxyeicosanoid dehydrogenase in neutrophils and keratinocytes. Because of its chemoattractant properties, sebum-derived 5-oxo-ODE could be involved in neutrophil infiltration in inflammatory skin diseases.  相似文献   

16.
Blee E  Joyard J 《Plant physiology》1996,110(2):445-454
Enzymes in envelope membranes from spinach (Spinacia oleracea L.) chloroplasts were found to catalyze the rapid breakdown of fatty acid hydroperoxides. In contrast, no such activities were detected in the stroma or in thylakoids. In preparations of envelope membranes, 9S-hydroperoxy-10(E),12(Z)-octadecadienoic acid, 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid, or 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid were transformed at almost the same rates (1-2 [mu]mol min-1 mg-1 protein). The products formed were separated by reversed-phase high-pressure liquid chromatography and further characterized by gas chromatography-mass spectrometry. Fatty acid hydroperoxides were cleaved (a) into aldehydes and oxoacid fragments, corresponding to the functioning of a hydroperoxide lyase, (b) into ketols that were spontaneously formed from allene oxide synthesized by a hydroperoxide dehydratase, (c) into hydroxy compounds synthesized enzymatically by a system that has not yet been characterized, and (d) into oxoenes resulting from the hydroperoxidase activity of a lipoxygenase. Chloroplast envelope membranes therefore contain a whole set of enzymes that catalyze the synthesis of a variety of fatty acid derivatives, some of which may act as regulatory molecules. The results presented demonstrate a new role for the plastid envelope within the plant cell.  相似文献   

17.
通过规模化液态深层发酵获得灵芝发酵产物,采用多种硅胶色谱柱层析及重结晶的方式,从中分离得到10个化合物。通过核磁、质谱等波谱分析,鉴定出这些化合物均属于含羟基或酮基的不饱和脂肪酸类化合物,分别为(9S,10R,11E,13R)-9,10,13-trihydroxyoctadec-11-enoic acid(1)和(9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoic acid(2)的混合物、12S*,13S*-dihydroxy-9-oxo-10(E)- octadecenoic acid(3)、9R*,10R*-dihydroxy-13-oxo-11(E)-octadecenoic acid(4)、12S*,13R*-dihydroxy- 9-oxo-10(E)-octadecenoic acid(5)、9S*,10R*-dihydroxy-13-oxo-11(E)-octadecenoic acid(6)、10(S)-hydroxy-8(Z)-octadecenoic acid(7)、12-oxooctadeca-8,10-dienoic acid(8)、9,12-dihydroxy-10-eicosenoic acid(9)和9-oxooctadeca-10,12-dienoic acid(10)。这些化合物均为首次从灵芝发酵产物中获得,且具有不同程度的体外抗肿瘤活性。其中,化合物8和化合物10对L1210细胞增殖抑制的IC50值分别为13.00μmol/L和16.88μmol/L,对K562细胞增殖亦有良好的抑制效果,是具有抗肿瘤潜力的天然产物。  相似文献   

18.
The fungus Gaeumannomyces graminis metabolized linoleic acid extensively to (8R)-hydroperoxylinoleic acid, (8R)-hydroxylinoleic acid, and threo-(7S,8S)-dihydroxylinoleic acid. When G. graminis was incubated with linoleic acid under an atmosphere of oxygen-18, the isotope was incorporated into (8R)-hydroxylinoleic acid and 7,8-dihydroxylinoleic acid. The two hydroxyls of the latter contained either two oxygen-18 or two oxygen-16 atoms, whereas a molecular species that contained both oxygen isotopes was formed in negligible amounts. Glutathione peroxidase inhibited the biosynthesis of 7,8-dihydroxylinoleic acid. These findings demonstrated that the diol was formed from (8R)-hydroperoxylinoleic acid by intramolecular hydroxylation at carbon 7, catalyzed by a hydroperoxide isomerase. The (8R)-dioxygenase appeared to metabolize substrates with a saturated carboxylic side chain and a 9Z-double bond. G. graminis also formed omega 2- and omega 3-hydroxy metabolites of the fatty acids. In addition, linoleic acid was converted to small amounts of nearly (65% R) racemic 10-hydroxy-8,12-octadecadienoic acid by incorporation of atmospheric oxygen. An unstable metabolite, 11-hydroxylinoleic acid, could also be isolated as well as (13R,13S)-hydroxy-(9E,9Z), (11E)-octadecadienoic acids and (9R,9S)-hydroxy-(10E), (12E,12Z)-octadecadienoic acids. In summary, G. graminis contains a prominent linoleic acid (8R)-dioxygenase, which differs from the lipoxygenase family of dioxygenases by catalyzing the formation of a hydroperoxide without affecting the double bonds of the substrate.  相似文献   

19.
M O Funk  J C Andre  T Otsuki 《Biochemistry》1987,26(21):6880-6884
Lipoxygenase, a nonheme iron dioxygenase, catalyzes the oxygenation of 1,4-diene units in polyunsaturated fatty acids, forming conjugated diene hydroperoxides as the primary products. The naturally occurring all-Z geometry for the olefins in the polyunsaturated fatty acid has long been thought to be a substrate requirement for the enzyme. A rigorous test of this hypothesis using the two isomeric (9E,12Z)- and (9Z,12E)-9,12-octadecadienoic acids was carried out. Both isomeric substrates were found to be catalytically oxygenated by soybean lipoxygenase 1 at a significant fraction of the rate of the reaction of the natural substrate, linoleic acid. Product determinations revealed that a thermodynamically unfavorable E to Z isomerization at the 9,10-position occurred when (9E,12Z)-9,12-octadecadienoic acid was converted into the 13-hydroperoxide by lipoxygenase 1. Determination of the stereochemistry at the oxygenated position in the products indicated that a comparable isomerization at the 12,13-position did not occur when the 9Z,12E isomer was employed. The distribution of products obtained from oxygenation at the 9-position supported the hypothesis that the enzyme catalyzes the reaction in one of two substrate orientations, conventional and head to tail reversed. The observations can be understood on the basis of the steric demands on intermediates in the proposed mechanism of action as well as by catalysis by the active-site iron atom.  相似文献   

20.
Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC–MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号