首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inclusive fitness theory predicts that natural selection will favour altruist genes that are more accurate in targeting altruism only to copies of themselves. In this paper, we provide evidence from digital evolution in support of this prediction by competing multiple altruist-targeting mechanisms that vary in their accuracy in determining whether a potential target for altruism carries a copy of the altruist gene. We compete altruism-targeting mechanisms based on (i) kinship (kin targeting), (ii) genetic similarity at a level greater than that expected of kin (similarity targeting), and (iii) perfect knowledge of the presence of an altruist gene (green beard targeting). Natural selection always favoured the most accurate targeting mechanism available. Our investigations also revealed that evolution did not increase the altruism level when all green beard altruists used the same phenotypic marker. The green beard altruism levels stably increased only when mutations that changed the altruism level also changed the marker (e.g. beard colour), such that beard colour reliably indicated the altruism level. For kin- and similarity-targeting mechanisms, we found that evolution was able to stably adjust altruism levels. Our results confirm that natural selection favours altruist genes that are increasingly accurate in targeting altruism to only their copies. Our work also emphasizes that the concept of targeting accuracy must include both the presence of an altruist gene and the level of altruism it produces.  相似文献   

2.
In this paper five conditions are specified which must be met before reciprocal altruism, rather than kin selection, should be invoked. Four purported mammalian examples— social grooming in coati, cluster position in roosting pallid bats, information exchange among greater spear-nosed bats, and blood regurgitation among vampire bats—are examined to determine if reciprocal altruism is necessary to plausibly explain each situation. Results from a computer simulation which apportions the relative selective advantage of vampire bat food sharing to kin selection and reciprocal altruism are then presented. The results demonstrate that the increase in individual survivorship due to reciprocal food sharing events in this species provides a greater increase in inclusive fitness than can be attributed to aiding relatives. This analysis suggests that reciprocal altruism can be selectively more important than kin selection when altruistic behaviors in a relatively large social group occur frequently and provide a major fitness benefit to the recipient even when that recipient is related to the donor.  相似文献   

3.
Kin selection theory predicts that altruistic behaviors, those that decrease the fitness of the individual performing the behavior but increase the fitness of the recipient, can increase in frequency if the individuals interacting are closely related. Several studies have shown that inbreeding therefore generally increases the effectiveness of kin selection when fitnesses are linear, additive functions of the number of altruists in the family, although with extreme forms of altruism, inbreeding can actually retard the evolution of altruism. These models assume that a constant proportion of the population mates at random and a constant proportion practices some form of inbreeding. In order to investigate the effect of inbreeding on the evolution of altruistic behavior when the mating structure is allowed to evolve, we examined a two-locus model by computer simulation of a diploid case and illustrated the important qualitative features by mathematical analysis of a haploid case. One locus determines an individual's propensity to perform altruistic social behavior and the second locus determines the probability that an individual will mate within its sibship. We assumed positive selection for altruism and no direct selection at the inbreeding locus. We observed that the altruistic allele and the inbreeding allele become positively associated, even when the initial conditions of the model assume independence between these loci. This linkage disequilibrium becomes established, because the altruistic allele increases more rapidly in the inbreeding segment of the population. This association subsequently results in indirect selection on the inbreeding locus. However, the dynamics of this model go beyond a simple "hitch-hiking" effect, because high levels of altruism lead to increased inbreeding, and high degrees of inbreeding accelerate the rate of change of the altruistic allele in the entire population. Thus, the dynamics of this model are similar to those of "runaway" sexual selection, with gene frequency change at the two loci interactively causing rapid evolutionary change.  相似文献   

4.
Inclusive fitness theory provides the conceptual framework for our current understanding of social evolution, and empirical studies suggest that kin selection is a critical process in the evolution of animal sociality. A key prediction of inclusive fitness theory is that altruistic behaviour evolves when the costs incurred by an altruist (c) are outweighed by the benefit to the recipient (b), weighted by the relatedness of altruist to recipient (r), i.e. Hamilton''s rule rb > c. Despite its central importance in social evolution theory, there have been relatively few empirical tests of Hamilton''s rule, and hardly any among cooperatively breeding vertebrates, leading some authors to question its utility. Here, we use data from a long-term study of cooperatively breeding long-tailed tits Aegithalos caudatus to examine whether helping behaviour satisfies Hamilton''s condition for the evolution of altruism. We show that helpers are altruistic because they incur survival costs through the provision of alloparental care for offspring. However, they also accrue substantial benefits through increased survival of related breeders and offspring, and despite the low average relatedness of helpers to recipients, these benefits of helping outweigh the costs incurred. We conclude that Hamilton''s rule for the evolution of altruistic helping behaviour is satisfied in this species.  相似文献   

5.
《Ethology and sociobiology》1988,9(2-4):189-209
Reciprocal altruism is usually regarded as distinct from kin selection. However, because reciprocators are likely to establish long-term relations and to deliver most of their aid to other individuals genetically predisposed to reciprocation, most acts of reciprocal altruism should involve indirect increments to inclusive fitness, at least as regards alleles for reciprocation. Thus, as usually defined, reciprocal altruism is not clearly distinct from kin selection because both involve indirect increments to inclusive fitness. We propose a new definition for reciprocal altruism that makes the phenomenon distinct from kin selection and allows for reciprocation between nonrelatives in which current costs exceed future benefits returned to the reciprocal altruist. Cooperation and reciprocal altruism are often considered synonymous or different only in the timing of donating and receiving aid. We show, however, that there are other critical differences between reciprocal altruism and other forms of cooperation, most importantly, the latter often involve no clearly identifiable aid. We propose a four-category system to encompass the range of cooperative and beneficent behaviors that occur in nature (reciprocal altruism, pseudoreciprocity, simultaneous cooperation and by-product beneficence). Reciprocal altruism must involve aid that is returned to an original donor as a result of behavior that has a net cost to an original recipient. Our simplest category of cooperative/beneficent behavior, “by-product beneficence,” occurs when a selfish act also benefits another individual and requires no prior or subsequent interactions between the individuals involved. By-product beneficence may be the primitive state from which more complicated types of cooperative/beneficent behavior evolved. We show via simple models that by-product beneficence can allow for the initial increase of helping behavior in a completely unstructured population although the individuals showing such behavior pay all the costs while sharing the benefits with other individuals. Previous models that attempted to explain the initial increase of cooperative/beneficent behavior were much more complex and were based on the prisoner's dilemma, which does not accurately reflect most forms of cooperation and beneficence that occur in nature.  相似文献   

6.
Sibly RM  Curnow RN 《Heredity》2011,107(2):167-173
Altruism and selfishness are 30-50% heritable in man in both Western and non-Western populations. This genetically based variation in altruism and selfishness requires explanation. In non-human animals, altruism is generally directed towards relatives, and satisfies the condition known as Hamilton's rule. This nepotistic altruism evolves under natural selection only if the ratio of the benefit of receiving help to the cost of giving it exceeds a value that depends on the relatedness of the individuals involved. Standard analyses assume that the benefit provided by each individual is the same but it is plausible in some cases that as more individuals contribute, help is subject to diminishing returns. We analyse this situation using a single-locus two-allele model of selection in a diploid population with the altruistic allele dominant to the selfish allele. The analysis requires calculation of the relationship between the fitnesses of the genotypes and the frequencies of the genes. The fitnesses vary not only with the genotype of the individual but also with the distribution of phenotypes amongst the sibs of the individual and this depends on the genotypes of his parents. These calculations are not possible by direct fitness or ESS methods but are possible using population genetics. Our analysis shows that diminishing returns change the operation of natural selection and the outcome can now be a stable equilibrium between altruistic and selfish alleles rather than the elimination of one allele or the other. We thus provide a plausible genetic model of kin selection that leads to the stable coexistence in the same population of both altruistic and selfish individuals. This may explain reported genetic variation in altruism in man.  相似文献   

7.
A quantitative test of Hamilton's rule for the evolution of altruism   总被引:1,自引:0,他引:1  
The evolution of altruism is a fundamental and enduring puzzle in biology. In a seminal paper Hamilton showed that altruism can be selected for when rb - c > 0, where c is the fitness cost to the altruist, b is the fitness benefit to the beneficiary, and r is their genetic relatedness. While many studies have provided qualitative support for Hamilton's rule, quantitative tests have not yet been possible due to the difficulty of quantifying the costs and benefits of helping acts. Here we use a simulated system of foraging robots to experimentally manipulate the costs and benefits of helping and determine the conditions under which altruism evolves. By conducting experimental evolution over hundreds of generations of selection in populations with different c/b ratios, we show that Hamilton's rule always accurately predicts the minimum relatedness necessary for altruism to evolve. This high accuracy is remarkable given the presence of pleiotropic and epistatic effects as well as mutations with strong effects on behavior and fitness (effects not directly taken into account in Hamilton's original 1964 rule). In addition to providing the first quantitative test of Hamilton's rule in a system with a complex mapping between genotype and phenotype, these experiments demonstrate the wide applicability of kin selection theory.  相似文献   

8.
A cornerstone result of sociobiology states that limited dispersal can induce kin competition to offset the kin selected benefits of altruism. Several mechanisms have been proposed to circumvent this dilemma but all assume that actors and recipients of altruism interact during the same time period. Here, this assumption is relaxed and a model is developed where individuals express an altruistic act, which results in posthumously helping relatives living in the future. The analysis of this model suggests that kin selected benefits can then feedback on the evolution of the trait in a way that promotes altruistic helping at high rates under limited dispersal. The decoupling of kin competition and kin selected benefits results from the fact that by helping relatives living in the future, an actor is helping individuals that are not in direct competition with itself. A direct consequence is that behaviours which actors gain by reducing the common good of present and future generations can be opposed by kin selection. The present model integrates niche-constructing traits with kin selection theory and delineates demographic and ecological conditions under which altruism can be selected for; and conditions where the 'tragedy of the commons' can be reduced.  相似文献   

9.
ABSTRACT: BACKGROUND: Altruistic behavior is defined as helping others at a cost to oneself and a lowered fitness. The lower fitness implies that altruists should be selected against, which is in contradiction with their widespread presence is nature. Present models of selection for altruism (kin or multilevel) show that altruistic behaviors can have 'hidden' advantages if the 'common good' produced by altruists is restricted to some related or unrelated groups. These models are mostly deterministic, or assume a frequency dependent fitness. RESULTS: Evolutionary dynamics is a competition between deterministic selection pressure and stochastic events due to random sampling from one generation to the next. We show here that an altruistic allele extending the carrying capacity of the habitat can win by increasing the random drift of "selfish" alleles. In other terms, the fixation probability of altruistic genes can be higher than those of a selfish ones, even though altruists have a smaller fitness. Moreover when populations are geographically structured, the altruists advantage can be highly amplified and the fixation probability of selfish genes can tend toward zero. The above results are obtained both by numerical and analytical calculations. Analytical results are obtained in the limit of large populations. CONCLUSIONS: The theory we present does not involve kin or multilevel selection, but is based on the existence of random drift in variable size populations. The model is a generalization of the original Fisher-Wright and Moran models where the carrying capacity depends on the number of altruists.  相似文献   

10.
A model of population structure is discussed which under certain circumstances allows for evolution of altruistic traits, beyond the classical restrictions imposed by kin selection theory and related concepts such as reciprocal altruism. Essentially, the model sees a large population as socially subdivided into small groups without any barriers, however, to free random mating. An altruistic trait is defined as lowering, locally, the fitness of a carrier below that of noncarriers within the same group; but the local fitness of an individual randomly chosen in a group increases with the number of altruists. It is shown that altruism can evolve even if the groups are randomly formed. The conditions for such evolution are contrasted with those prevailing when the groups are formed either with some phenotypic assortment between the members or on the basis of kinship. It is shown that any possibility of evolution tends to rapidly disappear as groups become large, unless there is complete positive assortment or individuals in the groups are kin. The example of alarm calls is also considered, and the two extremes of random and sib-groups are contrasted, using a model by Maynard Smith. It is shown that alarm calls can evolve in small groups of unrelated individuals under conditions qualitatively similar but quantitatively more rigorous than those prevailing for sib-groups.  相似文献   

11.
Altruistic behaviors seem anomalous from a traditional view of Darwinian natural selection, and evolutionary explanations for them have generated much discussion. The debate centers around four major explanations: classic individual-level selection, reciprocity and game theory, kin selection, and trait-group selection. The historical context and defining criteria of each model must be reviewed before its validity can be assessed. Of these proposed mechanisms, group selection historically has been the most controversial. Although the extent to which empirical data support group selection hypotheses is uncertain, there is evidence for group-level selection among avirulent virus strains and foraging ant queens. Researchers studying mammalian behavior, particularly primatologists, have largely dismissed models of group-level selection. Most discussion of altruism among primates has focused on differences in fitness among individuals within a single group, but students of altruistic behaviors exhibited by primates also need to investigate intergroup variation with respect to these behaviors. Various altruistic behaviors are likely to have evolved through different forms of selection, and each example of apparent altruism therefore needs to be evaluated separately.  相似文献   

12.
From an evolutionary perspective, social behaviours are those which have fitness consequences for both the individual that performs the behaviour, and another individual. Over the last 43 years, a huge theoretical and empirical literature has developed on this topic. However, progress is often hindered by poor communication between scientists, with different people using the same term to mean different things, or different terms to mean the same thing. This can obscure what is biologically important, and what is not. The potential for such semantic confusion is greatest with interdisciplinary research. Our aim here is to address issues of semantic confusion that have arisen with research on the problem of cooperation. In particular, we: (i) discuss confusion over the terms kin selection, mutualism, mutual benefit, cooperation, altruism, reciprocal altruism, weak altruism, altruistic punishment, strong reciprocity, group selection and direct fitness; (ii) emphasize the need to distinguish between proximate (mechanism) and ultimate (survival value) explanations of behaviours. We draw examples from all areas, but especially recent work on humans and microbes.  相似文献   

13.
Summary Several mechanisms have been proposed for group selection, to account for the evolution of altruistic traits. One type, Neighbourhood models, suggests that individuals react with those immediately around them, but with no recognition mechanism. The organization of plant populations seems especially favorable for this type of selection. The possibility of Neighbourhood selection was investigated by simulating a plant population. It was possible for an altruistic trait to evolve, though only under restricted conditions. The main requirement was gene flow only by very restricted pollen dispersal, and a high benefit : cost ratio in the altruistic relationship. Under conditions favourable for such evolution, the starting frequency of the allele, the initial pattern, and the population size, had little effect. Inbreeding tended to prevent the increase of the altruism allele, though this depended on the mechanism of selfing. Known ecological features of plants are discussed that could be considered altruistic and hence require some form of group selection for their evolution, and whether the benefit : cost requirements are likely to be met. Neighbourhood models of group selection are a possibility in plant populations, and we therefore cannot exclude the possibility of altruism in plants. However, Neighbourhood selection is weak force, unlikely to be effective in the face of opposing individual selection. It may be more important as reinforcement of individual selection.  相似文献   

14.
Assessing the validity of Hamilton's rule when there is both inbreeding and dominance remains difficult. In this article, we provide a general method based on the direct fitness formalism to address this question. We then apply it to the question of the evolution of altruism among diploid full sibs and among haplodiploid sisters under inbreeding resulting from partial sib mating. In both cases, we find that the allele coding for altruism always increases in frequency if a condition of the form rb>c holds, where r depends on the rate of sib mating alpha but not on the frequency of the allele, its phenotypic effects, or the dominance of these effects. In both examples, we derive expressions for the probability of fixation of an allele coding for altruism; comparing these expressions with simulation results allows us to test various approximations often made in kin selection models (weak selection, large population size, large fecundity). Increasing alpha increases the probability of fixation of recessive altruistic alleles (h<1/2), while it can increase or decrease the probability of fixation of dominant altruistic alleles (h>1/2).  相似文献   

15.
Altruism poses a problem for evolutionary biologists because natural selection is not expected to favor behaviors that are beneficial to recipients, but costly to actors. The theory of kin selection, first articulated by Hamilton (1964), provides a solution to the problem. Hamilton's well-known rule (br > c) provides a simple algorithm for the evolution of altruism via kin selection. Because kin recognition is a crucial requirement of kin selection, it is important to know whether and how primates can recognize their relatives. While conventional wisdom has been that primates can recognize maternal kin, but not paternal kin, this view is being challenged by new findings. The ability to recognize kin implies that kin selection may shape altruistic behavior in primate groups. I focus on two cases in which kin selection is tightly woven into the fabric of social life. For female baboons, macaques, and vervets maternal kinship is an important axis of social networks, coalitionary activity, and dominance relationships. Detailed studies of the patterning of altruistic interactions within these species illustrate the extent and limits of nepotism in their social lives. Carefully integrated analyses of behavior, demography, and genetics among red howlers provide an independent example of how kin selection shapes social organization and behavior. In red howlers, kin bonds shape the life histories and reproductive performance of both males and female. The two cases demonstrate that kin selection can be a powerful source of altruistic activity within primate groups. However, to fully assess the role of kin selection in primate groups, we need more information about the effects of kinship on the patterning of behavior across the Primates and accurate information about paternal kin relationships.  相似文献   

16.
This article penetrates the relationship between social behavior and rationality. A critical analysis is made of efforts to classify some behaviors as altruistic, as they simultaneously meet criteria of rationality by not truly being self-destructive. Newcomb's paradox is one attempt to create a hybrid behavior that is both irrational and still meets some criterion of rationality. Such dubious rationality is often seen as a source of altruistic behavior. Group selection is a controversial topic. Sober and Wilson (Unto Others--The Evolution and Psychology of Unselfish Behavior, Harvard University Press, Cambridge, MA, 1998) suggest that a very wide concept of group selection might be used to explain altruism. This concept also includes kin selection and reciprocity, which blurs its focus. The latter mechanisms hardly need further arguments to prove their existence. This article suggests that it is group selection in a strict sense that should be investigated to limit semantic neologism and confusion. In evaluation, the effort to muster a mechanism for altruism out of group selection has not been successful. However, this is not the end to group selection, but rather a good reason to investigate more promising possibilities. There is little reason to burden group selection with the instability of altruism caused by altruistic members of a group having lower fitness than egoistic members. Group selection is much more likely to develop in combination with group egoism. A common project is supported by incitement against free riding, where conformist members joined in solidarity achieve a higher fitness than members pursuing more individualistic options. Group egoism is in no conflict with rationality, and the effects of group selection will be supported rather than threatened by individual selection. Empirical evidence indicates a high level of traits such as conformism and out-group antagonism in line with group egoism. These traits are also likely candidates for behavior favored by group selection since they homogenize the group and link the different individuals closer to one another and a similar fate.  相似文献   

17.
The evolution of sterile worker castes in eusocial insects was a major problem in evolutionary theory until Hamilton developed a method called inclusive fitness. He used it to show that sterile castes could evolve via kin selection, in which a gene for altruistic sterility is favored when the altruism sufficiently benefits relatives carrying the gene. Inclusive fitness theory is well supported empirically and has been applied to many other areas, but a recent paper argued that the general method of inclusive fitness was wrong and advocated an alternative population genetic method. The claim of these authors was bolstered by a new model of the evolution of eusociality with novel conclusions that appeared to overturn some major results from inclusive fitness. Here we report an expanded examination of this kind of model for the evolution of eusociality and show that all three of its apparently novel conclusions are essentially false. Contrary to their claims, genetic relatedness is important and causal, workers are agents that can evolve to be in conflict with the queen, and eusociality is not so difficult to evolve. The misleading conclusions all resulted not from incorrect math but from overgeneralizing from narrow assumptions or parameter values. For example, all of their models implicitly assumed high relatedness, but modifying the model to allow lower relatedness shows that relatedness is essential and causal in the evolution of eusociality. Their modeling strategy, properly applied, actually confirms major insights of inclusive fitness studies of kin selection. This broad agreement of different models shows that social evolution theory, rather than being in turmoil, is supported by multiple theoretical approaches. It also suggests that extensive prior work using inclusive fitness, from microbial interactions to human evolution, should be considered robust unless shown otherwise.  相似文献   

18.
This brief mathematical model of “the green beard effect” is an attempt to extend the concept of kin selection beyond kin, to help explain the broad reach of cooperation sometimes observed in civilized societies. We assume that individual differences in human behavior are founded on genes as well as environment and therefore that reproductive success is a long-term determinant of human affairs. We further assume that many of the genetic sources of behavioral heterogeneity among individuals are not highly concentrated along family lines. The perceptive altruists we model reach out into the population at large, giving increases in fitness to those whose phenotypes include one or another aspect of some behavioral trait the altruist values in himself and others. The model points to factors that influence whether an individual prefers to be altruistic toward those with whom he or she shares rare qualities or more common distinguishing qualities; these factors include the exhaustibility of the altruist's reserves, and the necessity of concentrating efforts locally versus the possibility of effectively broadcasting a particular sort of benefit.  相似文献   

19.
Models of kin or group selection usually feature only one possible fitness transfer. The phenotypes are either to make this transfer or not to make it and for any given fitness transfer, Hamilton's rule predicts which of the two phenotypes will spread. In this article we allow for the possibility that different individuals or different generations face similar, but not necessarily identical possibilities for fitness transfers. In this setting, phenotypes are preference relations, which concisely specify behaviour for a range of possible fitness transfers (rather than being a specification for only one particular situation an animal or human can be in). For this more general set-up, we find that only preference relations that are linear in fitnesses can be explained using models of kin selection and that the same applies to a large class of group selection models. This provides a new implication of hierarchical selection models that could in principle falsify them, even if relatedness--or a parameter for assortativeness--is unknown. The empirical evidence for humans suggests that hierarchical selection models alone are not enough to explain their other-regarding or altruistic behaviour.  相似文献   

20.
Kin selection,kin avoidance and correlated strategies   总被引:1,自引:0,他引:1  
Summary Kin selection of correlated strategies is examined for both weak and strong altruism under simple haploid inheritance. While kin assortment enhances the range of evolutionary stability for (strongly altruistic) correlated strategies (defined herein), kin avoidance is possible under a weakly altruistic correlated strategy. When social competition induces role assignments of variable fitness, group mates may prefer association with non-relatives. Even when group life is mandatory, an individual may accept the risk of abandonment (and reproductive death) rather then associate with kin: a competitive superior may behave altruistically by permitting competitively inferior kin to emigrate. Thus, kin selection and social competition are not necessarily mutually supportive processes within groups. I conclude by interpreting dominance as a strongly altruistic correlated strategy in two social hymenopteran contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号